CONTINUOUS QUERY PROCESSING IN A DATA STREAM
ENVIRONMENT

Dong Gyu Lee*, Bong Jae Lee**, Keun Ho Ryu*

*Chungbuk National University, dglee@dblab.chungbuk.ac.kr
*Chungbuk National University, khryu@dblab.chungbuk.ac. kr
**Korea Electric Power Research Institute, bjlee@kepri.re.kr

ABSTRACT ... Many continuous queries are important to be process efficiently in a data stream environment. It is
applied a query index technique that takes linear performance irrespective of the number and width of intervals for
processing many continuous queries. Previous researches are not able to support the dynamic insertion and deletion to
arrange intervals for constructing an index previously. It shows that the insertion and search performance is slowed by
the number and width of interval inserted. Many intervals have to be inserted and searched linearly in a data stream
environment. Therefore, we propose Hashed Multiple Lists in order to process continuous queries linearly. Proposed
technique shows fast linear search performance. It can be utilized the systems applying a sensor network, and pre-

processing technique of spatiotemporal data mining.

KEY WORDS: Continuous Query, Query Processing, Data stream, Concurrent query, Query index

1. INTRODUCTION

There are ongoing various researches for building an
ad-hoc network applying sensors in real world to
development of sensor network and mobile computing
technologies[1, 2]. To provide intelligent ubiquitous
services based on the network as this, once it needs to
query and combine incoming data in sensor nodes.
However, 1t 1s inadequate to process a data stream
continuously occurring in sensor network by existing
language and operations for processing static data.

There are two different between sensor data and existing
database[1]. First, data stream is processed continuously.
Events requiring a response immediately as Traffic
accidents are processed in near real time. Because raw
data stream for saving in disk requires expensive storage
cost. Second, since sensor nodes have a low performance
processor and limited power resource, query processor
needs to reduce consumption of power resource. To
monitor a data stream and process efficiently, a lot of
continuous queries can be made and evaluated
continuously against each data item in the incoming data
stream{3].

Query index techniques are used to process continuous
queries quickly. Query index storing the intervals in order
to process queries efficiently checks intervals containing
search value and then returns query identifiers. Query
index of good performance must have low storage cost
and fast linear search performance for processing
continuous queries in a data stream environment. It must
also store a number of queries. Figure 1 is a structure
applying the query index. The query index, query
analyzer, query response, and message DB are consisted
in server stde. If the users send queries to query analyzer,

it checks a condition of query and makes an interval of
each attribute.

A query index consists of created interval according to
attribute in query analyzer and the query index returns
query identifiers searching interval against incoming data
stream in sensor network. Query response searches
messages in message database using identifiers of each
attributes returned. It prevents natural disasters operating
actuator or inform to users through the messages. Such
structure enables to apply data stream management
system or context-awareness system and they have an
advantage to process concurrently a number of queries by
query index.

fuery
Analysis

Figure 1 Architecture for multiple query processing

We can check to be processed continuous queries
efficiently by query index using such structure for
application in a data stream environment. If the structure
does not have a query index, it must process continuous
query one by one or it consumes large storage cost and
search cost to process after storing continuous query in
database. The query index needs for processing
continuous query efficiently in a data stream environment.
Therefore, we propose Hashed Multiple Lists for
evaluating continuous query efficiently. Proposed
technique has linear fast search and enables to apply 1t to

data stream management system or context-awareness
system.

2. RELATED WORK

As the existing research of query index, the indexes
performing stabbing query[3, 6] that finds interval
containing a numerical value and CEl-based query
indexing[3] having fast linear search performance in a
data stream environment are explained in this section.
There are Segment trees[6], Interval trees[6], Interval
binary search trees(IBS-tree){7], and Interval skip
lists(IS-lists)[8] as existing researches.

Existing researches is not stable to be not considered in
a data stream environment. Segment tree and interval tree
is difficult to insert and delete dynamically that they
already consist of all of interval. IBS-tree and IS-lists are
designed a query index technique based on main-memory.

Two techniques are first dynamic approaches managing
the large number of overlapped intervals. Though they
are similar with principle, the implementation of IS-lists
1s simpler and its performance is better. They can express
various intervals of queries and can be apply context
information filter that transfers messages to the user
according to rules. If the number of inserted intervals is
large and search value is far from header, their search
time is increased. When long interval is inserted,
insertion cost 1s large. If n is the total number of IBS-tree
and IS-lists, they require search time of O(log(n)) and
storage cost of O(nlog(n)).

Recently, there is CEl-based query index technique for
processing continuous queries efficiently in a data stream
environment. This technique has fast linear search
performance, low storage cost, insertion and deletion
dynamically differing with existing researches as
stabbing query. However, if the total number of interval
1s less than 100 thousand and storage cost is larger than
IS-lists, insertion cost of long interval is also larger.
When long intervals are inserted in CEl-based query
indexing, it has low search performance to insert same
query identifiers much in identifier list of this index.

Therefore, search cost of existing researches is
increased 1n proportion to the number and length of
inserted intervals. It is difficult to process a lot of
intervals with wide width.

3. PROPOSED ALGORITHMS

HMLists consists of insertion, deletion, search, and
level adjustment algorithm. However, we explain each
step of search and level adjustment algorithm in this

paper.
3.1 Search Algorithm

Figure 2 1s the search algorithm that finds query
identifiers containing search value against data stream. If
a node of level 4 contains a search value of figure 2, it
returns query identifiers irrespective of next node and
descends to lower step. If a value of node is less than

search value, 1t descends the level and repeats the
operation that returns query identifiers. If a node
containing search value does not exist, it returns
identifiers of current pointer. If existing, it returns query
identifiers of the node. Search cost of this algorithm is
O(logn).

Algorithm HML Search(K)

INPUT K: Search key

OUTPUT S: set of searched query IDs
BEGIN

S=0

=maximum level

h=K/8

x=8h node allocating hashtable[h]
WHILE(i= 0 and (x is 4 level’s node and x—key+ K)) DO
S=S Ux—edgelD[1]
1=1--
WHILE(x—forward[i]+# null
and x—forward[1]—key<K) DO
x=x—>forward|[1]
ENDWHILE
IF(x is not the header and x—key+ K) THEN
S=S Ux—edgelD[i]
ELSE IF(x is not the header) THEN
S=S Ux—ID[i]
i=1--
ENDWHILE
END

oo ——

Figure 2 Search algorithm

3.2 Level Adjustment Algorithm

Figure 3 shows that an interval has minimum value and
maximum value of an attribute and each value is value of
a node. Each node has the levels and the level of node is
decided as structure of binary tree. Algorithm of figure 3
is algorithm that consisted of structure of binary tree that
Height of HMLists is 4 and the number of leaf node is 8.
It decides the level calculating the rest by Simple formula
that adjusts from highest level to lowest level.

Algorithm HML AdjustLevel(K)
INPUT K: Key for adjusting level
OUTPUT Level: Level of K
BEGIN
n=0, Level=0
H=height of HMLists
L=K%2™!
IF(L=0) THEN Level=H-1
ELSE IF(L=H) THEN Level=H-2 |
ELSE IF(L=H-2 || L= H+2) THEN Level=H-
ELSE Level=0
END

Figure 3 Level Adjustment algorithm

4. PERFORMANCE EVALUATION

This paper evaluates 3 techniques such as IS-lists,
CEI-based query index, and Hashed Multiple Lists. The
approaches are implemented by C++ language in

windows system of CPU 2.0GHz, and RAM 1GB
memory.

Search intervals of width 0—100

4500
4000 |-
3500 | -
3000 |
2500 t
2000
1500 }
1000 t
500

—O—CEI |
——1S-lists |
—ﬁ----HMLIStQI

Average search time (ms)

o000 20000

Total number of interval (n)

40000 60000 100000

Figure 4 Average seafch time to width 0-100

Figure 4 set up the interval width of queries between
minimum value 0 and maximum value 100. The indexes
are consisted of intervals between 5 thousand and 100
thousand and then average search time of the indexes is
evaluated. IS-Lists approach performs search operation
from root node progressively. If search value is far from
root node and the number of intervals is increased, it
takes long time. Average search time of CEI-based query
index is grown since the number of queries is increased.
It shows that others comparing with proposed approach
are not stable. Though search time of CEl-based query
index takes long time increasing the number of queries, it
is bigger problem that the index can not search linearly
urespective of a number of queries. However proposed
technique reduces the number of pointer limiting to level
of a node 4 and searches all search value within
maximum 8 nodes linearly using hash table.

Search intervals of width 200—400

25000

3

E 20000

L

k=

% 15000 r 3 .F_o_CEII |
= ~O—]S~lists *
@ 10000 |- _=A—HMLists -
-
.

S 5000 |

<

0

5000 20000 40000 60000 100000

|
Total number of interval (n) i

Figure 5 Average seaféh timé to Width 300-400

Figure 5 shows CEl-based query index performs worst
performance setting up the interval width of queries
between minimum 300 and maximum 400. Though
figure 4 set up the interval width of queries between 0
and 100, figure 5 set up the wider interval width of
queries between 300 and 400. Since CEl-based query
index search query identifiers on this condition, it
requires much search time. Also, since IS-lists search

from root node to NULL node, it takes much search time.
However, proposed Hashed Multiple Lists can search
within maximum & nodes linearly.

5. CONCLUSION

We proposed Hashed Multiple Lists for processing
efficiently continuous query in a data stream environment.
Proposed approach shows fast linear search performance
minimizing the number of node accesses since it decides
the level of node as the structure of binary tree and uses
hash table. Although the number of queries 1s increased,
it can search linearly through hash table. Proposed
technique is applied data stream management system or
context-awareness system. Ongoing work needs to
evaluate the algorithms in detail and apply a system using
wireless sensor network.

REFERENCES

[1] S. R. Madden, and M. Franklin, “Fjording the stream:
An architecture for queries over streaming Sensor
data”, 18th International Conference on Data
Engineering, pp 555-566, 2002.

[2] J. M. Hellerslein, W. Hong, and S. R. Madden, “The
Sensor Spectrum: Technology, Trends, and
Requirements”, ACM SIGMOD Record, Vol. 32,
issue 4, pp 22-27, 2003.

[3] K. L. Wu, S. K. Chen, and P. S. Yu, “Interval Query
Indexing for Efficient Stream Processing”, In Proc.
of ACM Int. Conf. on Information and Knowledge
Management, pp 88-97, 2004.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J.
Widom, “Models and Issues in Data Stream
Systems”, Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pp 1-16, 2002.

[5] L. Golab, and M. T. Ozsu, “Issues in Data Stream
Management”, ACM SIGMOD Record, Vol. 32, No.
2, pp 5-14, 2003.

[6] H. Samet, “Design and Analysis of Spatial Data
Structures”, Addison-Wesley, 1990.

[7] E. N. Hanson, and M. Chaabouni, “The IBS tree: A
data Structure for finding all intervals that overlap a

- point”, Technical Report WSU-CS-90-11, Wright
State University, 1990.

[8] E. N. Hanson and T. Johnson, “Selection predicate
indexing for active databases using interval skip
lists”, Information Systems, Vol. 21, No. 3, pp 269-
298, 1996.

ACKNOWLEDGEMENT

This research was supported by a grant #07 =E& 2 (05)
from Cutting-edge Urban Development — Korean Land
Spatialization Research Program funded by Ministry of
Construction & Transportation of Korean government.

_5-

