온라인(On-Line)학습이 아동의 수학적 창의력 신장에 미치는 영향 - 초등학교 4학년을 중심으로

홍용락* · 고대곤**
대구교육대학교 컴퓨터교육과
hgoodey@hanmail.net

The Influence of using On-Line Learning for improving of
Mathematical creativity in elementary school’s children

Yong-Rak, Hong
Dept. of Computer Education, Daegu University of Education

요 약
지식의 양이 기하급수적으로 늘어나고 지식의 창의적인 활용이 세상을 지배하는 지식기반사회에 사는 현대의 아동들에게 무엇보다 중요함 창의력이 오히려 급격히 감소하는 경향을 보이는 이 때, 온라인 학습을 통해 아동들의 수학적 창의력을 신장할 수 있다고 생각하며 수학적 창의력의 요소중 다양한 관점으로 문제를 해결하는 능력을 신장시키기 위해 수학적 능력을 측정할 수 있는 평가도구 프로그램과 측정도구를 이용하여 실시하여 수학적 창의력이 신장됨을 알았다. 그 결과 온라인 학습은 수학적 창의력 신장에 도움을 준다고 할 수 있다.

1. 서 론
1.1 연구의 필요성 및 목적
오늘날 창의성, 창조성, 창의력 등의 다양한 용어로 정의되는 창의, 창조의 개념은 어떤 문제를 새로운 방식으로 해결하는 성향이나 능력을 말한다고 할 수 있을 것이다. 본 논문에서는 창의력으로 이러한 새로운 해결방식을 정의하고자 한다. 창의력은 지식기반사회의 개인에게 요구되고 있는 핵심 능력이고 나아가 첨단산업의 혁신적 발전을 이끌어내는 기초 영역으로서 21세기를 살아가기 위한 생존 요건으로 인식되어지고 있다.

이에 따라 우리나라에서도 제 6차 교육과정 이후 계속하여 창의성 교육의 중요성이 강조되어왔다. 제6차 교육과정에서 교육을 통해 추구하는 인간을 '창의적인 사고 능력을 바탕으로 새로운 것을 발전하고 생성하는 능력을 가진 사람'(교육부, 1992)으로 창의적 교육을 강조하여 왔으나 6차 교육과정 이후 현재까지 창의력 신장은 실제 학교교육의 역할 속에서 는 점점이 미흡한 실정이며, 교과교육에서 통합되어 이루어지기 보다는 대부분 교과교육 내용과는 관련 없는 일반적인 창의적 교육을 별도로 다루어 왔다. 반면 실제생활에서는 창의력이 각 전문 영역의 지식을 기반으로 하여 해결책이 잘 알려지지 않은 문제를 해결함으로써 혁신될 것이라고 기대하고 있지만 지식을 그대로 받아들이는 방식의 교육으로는 지식기반사회가 요구하는 창의적 인적자원을 양성해 내릴 수 없다고 본다. 7차 교육과정에서도 '기초능력을 토대로 창의적인 능력을 발휘하는 사람'을 기르는 것을 교육목표로 삼고 창의력 교육을 강조하고 다양한 방법으로 새로운 접근을 시도하고 있지만 시간적, 장소적, 물질적 요소들의 한계 때문에 창의력 신장 교육이 제대로 이루어지지 못하고 있는 실정이다.

따라서 창의력 신장은 교과교육 안에서 실현하기 위한 새로운 교육방안으로 온라인 학

* 대구교육대학교 대학원 컴퓨터교육전공
** 대구교육대학교 컴퓨터교육과 교수
습을 통해 교육과정의 핵심 속에서, 교과교육과 통합적으로 아동들의 창의력을 신장시키기 필요가 있다.

1.2 선행연구 사례

아동들의 창의력을 신장시키기 위한 선행연구로써, 서재에 의하는 그들의 논문에서 다음과 같이 대안을 제시하고 있다.

본 연구에서 창의력을 교육과정에서 요구하는 '창의적인 사고능력'과 같은 의미로 사용하며, 이와 같은 창의적 사고 능력을 신장시키는 것을 문제해결 상황에서의 창의력 신장이라 의미하고 사용한다.

그러나 본 연구는 교수-학습모형이나 학습환경 설계에 목적이 있는 것이 아니라 온라인 학습을 통해 창의력이 신장되었는지를 평가하기 위해 평가도구를 개발하고 실험해 본으로써 실제로 얼마나 신장되었는가에 초점을 두고자 한다는 점에서 앞의 연구와 차이가 있다고 할 수 있다.

따라서 본 연구는 교과교육과 연계하여 수학적 창의력 신장을 위해 온라인 학습을 활용하고자 한다.

1.3 연구 내용 및 방법

본 연구에서는 다음과 같은 내용을 연구하고자 한다.

첫째, 온라인 학습의 정의 및 특징을 조사한다.

둘째, 선행연구 분석을 통하여 온라인 학습을 통한 수학적 창의력 신장 연구의 필요성과 방법을 조사한다.

셋째, 실험집단과 비교집단을 선택하고 그 유의도를 조사한 후, 실험에 대한 계획을 세운다.

넷째, 실험 계획을 적용한 후, 이 실험의 적용이 초등학교 4학년 학생들의 창의력을 신장에 긍정적 영향을 미쳤는지를 검증해본다.

1.4 용어의 정의, 연구의 대상 및 제한점

(1) 온라인 학습

여기서 온라인(On-Line)학습이란 인터넷을 이용한 실시간 학습 및 비실시간 학습을 포함하는 의미로 제한하고자 한다.

온라인에서의 학습은 실시간 대화를 통한
학습과 비실시간으로 게시판을 이용한 학습
으로 나눌 수 있는데 전자는 체팅(chatting)을
이용한 학습이고 후자는 주로 홈페이지, 블로그, 커뮤니티 등을 이용한 학습을 말한다.
전자에서는 주로 실시간으로 즉각적인 학습이 이루어지므로 이러한 실시간 학습을 위한
도구들을 인스턴트 메신저라고 한다. 인스턴트 메신저(Instant Messenger)란 인터넷을 통해
쪽지, 파일, 자료들을 실시간 전송할 수 있는 서비스로 채팅이나 전화와 마찬가지로 실시간
으로 의사소통이 가능하다. 인스턴트 메신저 서비스의 종류에는 인터넷을 기반으로 별도의
추가 장치가 필요없이 무료로 이용할 수 있는Microsoft의 MSN 메신저, Sayclub 메신저, Daum 메신저, Nate on 메신저 등이 있는데 본
연구에서는 설치가 비교적 간단하고 사용하기 편리한 Nate on 메신저를 이용하고자 한다.
후자의 비실시간 온라인 학습은 주로 대구
교육청에서 초등학생들의 창의력 신장을 목적으로 지원하는 '창의넷(http://www.tcnclab.com/)
을 이용하여 관련자료를 수집하고 주로 대구
입식초등학교의 홈페이지(www.ipseok.es.kr)
와 학급홈페이지를 통하여 학습을 진행하고자 한다.

(2) 수학적 창의성
수학적 창의성에 대해 [4]선천적 - 한인지론은 - 수학에 적절적으로 관련된 창의성에 대
한 정의로 Krutetskii(1976)는 "다양한 해결
책을 내고, 정형화된 형태를 깨뜨리고, 자기
제한을 극복하는 사고 과정의 유연성"; Haylock(1984)은 "고정화-fixation)를 극복하고
정신 테세(mental sets)를 벗어나는 능력으로,
개발된 수학적 상황에서 다양하고 독창적인
반응을 많이 냈을 수 있는 능력"; Focene(1993)
는 "동일한 문제에 대하여 다양한 해결책을
고안하는 융통성과 문제 요소들을 새로운 방
식으로 결합하는 독창성을 포함하는 능력"으
로 정의하고 있다 - 고 하였다.

이러한 정의들을 살펴보면, 수학적 문제 상황에서 기존의 정식과 경험 등을 바탕으로
형성화된 틀을 벗어나, 주어진 문제를 다양한
방식으로 분석하여, 문제의 요소들이나
수학적 아이디어 등을 새로운 방식으로 결
합하여 결과를 얻는 것에 관련 있다고 할 수
있다.

(3) 연구의 대상 및 제한점
본 연구는 대구광역시 동구 모초등학교 4학
년 학생 56명을 대상으로 이루어졌으며, 모
든 초등학생들에게 일반화하는데 제한이 있다.

2. 이론적 배경
2.1 구성주의와 창의력
구성주의에 대해 [5]강인해는 그의 저서 '예
구성주의의가?'에서 - 구성주의와 창의력은
깊은 연관관계를 가지고 있다. 즉, 구성주
의에서 강조하는 것이 개인은 지식을 스스로
창의적으로 구성해 간다는 것이기 때문이다.
강인해에 따르면 "지식이란 일시적이고, 발달
적이며, 사회-문화적 배경을 바탕으로 하는
것, 따라서 개별적인 수 없는 것이다. 즉, 지식
이라는 것은 개인의 인지적 작용의 결과로서
현상에 대한 개별적 의미부여와 해석이라고
본다." 이러한 상대적 학습관과 창의력의 깊은
관련을 갖고 있다고 볼 수 있다. - 고 하였다.

2.2 Guilford의 다중지능이론
모형으로 설명했다. 그의 모형에 따르면,
내용 영역으로 4가지, 조작 영역으로 5가지,
산출 영역으로 6가지의 변인을 추출하였다. 이
가운데에 화학적 생산을 창의적 사고에 관련
되는 능력으로 보고 그 하위 변인을 기술하여
다음과 같다: ① 문제에 대한 감수성
(sensitivity); ② 사고의 유창성(fluency); ③
사고의 융통성(flexibility); ④ 사고의 독창성
(originality); ⑤ 재구성력 - 기존의 것에서 세
로운 기능을 생각한다(redefinition); ⑥ 정교
화(elaboration); ⑦ 집요성 (persistence) 등
2.3 교과교육에서의 창의력 신장

이와 같은 창의성에 대한 종속적인 관점은 ‘창의적 문제해결력’과 ‘새롭고 적절한 아이디어나 사물을 생산할 수 있는 능력’을 강조하고 있으며, 그 문제해결의 과정과 결과에서 인지적, 성격적, 환경적 측면이 복합적으로 작용하고 있음을 보여준다.

2.4 창의적 문제해결을 위한 사고전략
창의적 문제해결에는 환경적 사과와 논리·비판적 사고와 같은 고통사고력이 필수적으로 요구된다. 환경적 사고는 창의적으로 문제를 해결하는 과정에서 문제를 발견하고 정의하고, 독창적인 해결책 또는 대안을 마련하는데 기여하는 사고기능으로 새로운 방식으로 결합하거나 새롭고 신기하고 독창적인 산출물을 내는 과정이다.[8](서해에 의, 2002: 조연순 외, 2000)

한편 많은 창의적인 사고 기술은 논리·비판적 사고와 밀접하게 결합되어 있다 (Jonassen, 1996). 논리·비판적 사고는 논리적이고 체계적으로 사고하는 기능으로, 단지 수렴적 사고를 의미하는 것뿐만 아니라 문제 상황에 초점을 맞추어 사고하는 것을 의미한다.

3. 실험설계
3.1 실험 대상의 선정

<table>
<thead>
<tr>
<th>초등학교 4학년</th>
<th>실험집단</th>
<th>비교집단</th>
</tr>
</thead>
<tbody>
<tr>
<td>남 28명</td>
<td>14명</td>
<td>14명</td>
</tr>
<tr>
<td>여 28명</td>
<td>14명</td>
<td>14명</td>
</tr>
</tbody>
</table>

실험집단은 연구자가 현재 담당하고 있는 대구모초등학교 4학년 4반 학생들을 대상으로 하고 비교집단은 비슷한 수준의 다른 반을 선정하여 실험한다.

3.2 실험 장치의 구성

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC 사양</td>
<td>Window98 이상, XP 권장</td>
</tr>
<tr>
<td>프로그램개발</td>
<td>• 수학적 창의력 개발 프로그램</td>
</tr>
<tr>
<td>평가도구개발</td>
<td>• 평가무형지, 설문지, 평가무형지: 창의력 영역별 4문항, 설문지: 온라인 학습 선호도 조사</td>
</tr>
</tbody>
</table>

(1) 수학적 창의력 개발 프로그램
본 연구는 수학적 프로그램의 개발에 목적이 있는지 때문에 기존에 개발된 수학적 창의력 개발 프로그램을 이용하고자 한다.

(2) 평가도구개발

3.3 실험방법
먼저 비교집단의 학습방법을 반대로 학습이라 정의하고 실험집단의 학습을 온라인 학습이라고 정의하고 비교집단과 실험집단의 학습 방법의 차이와 그 특성을 살펴본다.
비교집단과 실험집단을 대상으로 두 집단간
제3부 프로젝트 단계에서는 2부에서 학습한 내용을 바탕으로 하여 1부에서 느낀 일상 생활 속의 문제 중에서 관심 있는 주제를 선정하여 실제로 자신의 창의적인 문제를 만들어 내는 과정이다.

이와 같은 3단계의 과정을 거쳐서 개인 또는 그룹이 하나의 수학적 산출물을 만들어 내는 수업 모형이라 할 수 있다.

<표1> 3단계 수업모형

<table>
<thead>
<tr>
<th>문제 풀기 방법 찾기</th>
</tr>
</thead>
<tbody>
<tr>
<td>1부 심화</td>
</tr>
<tr>
<td>ㆍ수학자</td>
</tr>
<tr>
<td>ㆍולוגי사</td>
</tr>
<tr>
<td>ㆍ수의 신비</td>
</tr>
<tr>
<td>ㆍ그림그리기</td>
</tr>
<tr>
<td>ㆍ제어있는</td>
</tr>
<tr>
<td>수 탐구</td>
</tr>
<tr>
<td>ㆍ골생 구구 탐구</td>
</tr>
</tbody>
</table>

3.4 실험결과

4. 적용 결과 및 분석

비교집단과 실험집단을 대상으로 동일한 학습의 기회를 제공하여 실험을 실시한 결과 온라인을 통한 학습은 한 집단이 반면 학습을 한 집단보다 수학적 창의력이 더 많이 향상됨을 알 수 있었다. 설문조사에서 알 수 있듯이 온라인 학습은 아동들이 발표에 대한 두려움을 없애주면서 자신들의 의견을 자유롭게 말하고 피드백을 받을 수 있다는 점이 창의적인 신장에 긍정적인 영향을 줄 것으로 보인다.

초등학교 학생들은 구체적 조작기에 허당하는 시기로 모든 것을 구체적인 조작활동을 통해 잘 파악하고 계명화교육을 통할 때 더 학습의 효과가 잘 나타난다. 온라인 학습은 반면 학습에서 실현하기 어려운 구체적 조작활동을 컴퓨터를 통하여 실현하고 전체, 모
들, 개별학습을 다양하게 실현할 수 있었을 뿐 아니라 실시간과 비실시간 학습을 통해 측각
피어로지 않은 아이디어를 합치더라도 계속적으
로 자신의 창의적 아이디어를 온라인으로 업
데이트해봄으로써 창의력의 신장을 보였다. 또
래 친구들과 토론하고 교사와도 온라인으로
토론해봄으로써 창의적 아이디어를 수정해가
는 과정에서 수학적 창의력이 많이 향상되었
다고 본다.

5. 결론 및 제언

지식기반사회에서는 창의력이 국가의 경쟁력
이고 개인의 경쟁력이다. 창의력을 기르기 위
한 다양한 시도들이 있어 왔지만 기술의 진보
로 인터넷을 이용한 온라인 학습이 언제 어디
서나 가능해졌으므로 이를 이용한 창의력 신
장 학습이 어느 때보다 요구된다.

본 연구의 결과처럼 인터넷을 기반으로 한
실시간 학습 및 온라인 학습 상황에서 면대면
수업의 상황에서 아동들의 수학적 창의력이
더 많이 신장되었으며 특히, 수학적 창의력의
요소 중 다양한 관점으로 문제를 해결하는 능
력이 신장되었다. 그 결과 온라인 학습은 수학
적 창의력 신장에 도움을 준다고 할 수 있으
므로 인터넷을 통한 온라인 학습이 교육현장
에서 보다 많이 활용되고 연구한다면 아동들
의 수학적 창의력이 보다 더 신장될 것으로
 terribly needs

6. 참고문헌

교수-학습 모형 및 자료 개발 연구. 연구보고
RR2002-0X, 한국교육개발원
적 문제해결을 위한 웹기반 교수-학습 모형과
학습 환경 설계: 수학교과에서의 예시를 중심
으로, 교육과학연구 제10권 1호(2006)
pp.209~234
램 분석을 통한 과학 창의성 요소 추출'
pp.9-14