# 관절와 상완 관절 불안정증의 치료 방침

이화여자대학교 의학전문대학원 정형외과학교실

### 신상진

- The management of shoulder instability should be individualized based on cause, host factors, and associated pathology
- Treatment modality
  - 1. Conservative treatment : Immobilization followed by rehabilitation and exercise
  - 2. Surgical treatment: Arthroscope / Open
- · Considerations for the choice of treatment
  - 1. Frequency (first episode/recurrent)
  - 2. Age (young/old)
  - 3. Pathology (soft tissue/bone)
  - 4. Duration (acute/chronic)
  - 5. Force (traumatic/atraumatic)

### Nonoperative treatment

### 1. Immobilization

- Purpose: prevent abduction and external rotation (avoid the dislocation position)
- Position: traditional sling (arm in internal rotation) vs. external rotation brace
- Duration: 3 to 6 weeks (longer immobilization in younger patients, shorter in older)

### 2. Rehabilitation

- Individualizing a rehabilitation program should take into account several factors, including knowledge of the patient's instability pattern and associated injury pathology
- Stretching exercise: restoration of range of motion using pendulum, pulley or cane
- Strengthening exercise
- : isometric exercise (resisted internal rotation and adduction by rubber tubing)
- : isotonic exercise (strengthen the stabilizer)
- : scapular stabilizer
- Proprioception and neuromuscular control (balance)

### 3. Factors for return to sports after rehabilitation

- a. normal rotator muscle strength
- b. comfortable and nearly full forward elevation
- c. confidence in shoulder with it in the necessary position

### 4. Risk factors of recurrence after nonoperative treatment in acute traumatic dislocation

- Age: 18~25 yrs (80~94% recurrent rate)
- Sports: contact athletes, overhead sports
- Activity and occupation: the military, overhead worker, manual labors
- Trauma: 78% of recurrent shoulder within 2~5 yrs had trauma history

### Surgical treatment

### 1. Indications

- Irreducible, open, recurrent dislocation, failed nonoperative treatment, glenoid bone loss greater than 25% and large engaging Hill-Sachs lesion

#### 2. Relative contraindication for surgical treatment

- a. Recurrent instability associated with uncontrolled epilepsy
- b. Inferior subluxation in a patient with stroke or deltoid insufficiency
- c. Multidirectional instability with voluntary instability

### 3. Arthroscopic repair

- Arthroscopic stabilization for shoulder instability has grown increasingly popular and shown comparable results with the gold standard open Bankart repair.

#### 1) Relative indications

- a. Traumatic unidirectional injury
- b. Noncontact-sport athletes
- c. Thick mobile Bankart lesion
- d. Little or no discernible capsular laxity
- e. Glenoid bone loss less than 25% of the glenoid surface
- f. Non-engaging Hill-Sachs lesion

### 2) Relative contraindications

- a. Large engaging Hill-sachs lesion
- b. Humeral avulsion of glenoid humeral ligament
- c. Significant glenoid bone loss (> 25% of the glenoid surface)
- d. Contact sportsman

### 3) Advantages

- a. Improve anatomic repair
- b. Better mobility and early range of motion
- c. Lower morbidity (minimize surgical dissection and less damage to surrounding tissue and scar)
- d. Improved cosmesis
- e. Less postoperative pain
- f. Identify concomitant pathology

### 4) Disadvantages

- a. Complication rate depending on technique
- b. Steep learning curve (technical skill)
- c. Undefined patient selection criteria
- d. Equivocal higher recurrence rate

### 5) Major improvement methods in arthroscopic approach

- a. Patients selection
- b. Restoration of all anatomic abnormalities
- c. Arthroscopic technique and instruments
- d. Individualized rehabilitation programs

### 6) Surgical tips

- a. Proper portal location: posterior, anteroinferior, anterosuperior, Port of Wilmington, transsubscapularis portals
- b. Accurate diagnosis and evaluation of associated pathology
- c. Adequate soft tissue mobilization of the nonanatomic labrum from anterior glenoid neck by either rasp, electric shaver, or elevator
- d. Glenoid preparation by gentle decortication, trough formation (?)
- e. Proper anchor numbers: minimum 3 anchors (5:30, 4,3 o' clock position)
- f. Proper anchor placements: 2 mm medial to the edge of the articular surface
- g. Precise anchor position respect to insertion angle and position
- · Too superficially insertion; chondral damage to the humeral head
- Too deep; sutures can be abraded by the bone
- Too medial; glenoid concavity reconstruction fail
  - h. Suture management (knot tying technique)

### 7) Factors affecting recurrence of instability after arthroscopic repair

- a. Incorrect diagnosis
- b. Surgical errors: technical errors, strength of repair
- c. Others: severe recurrent trauma, early mobilization
- d. Anatomic factors: glenoid concavity defect, residual capsular laxity, anterior capsular deficiency, engaging Hill-Sachs lesion, unrecognized HAGL lesion, rotator interval defect
- \* Risk factors for recurrent instability:

Age, Intensity of sports activity, Type of sports, Hyperlaxity, Hill-Sachs lesion, Glenoid bone loss (Boileau, ICSS, 2007)

### 4. Open repair

### 1) Relative indication

- a. Humeral avulsions of the glenohumeral ligaments
- b. Capsule ruptures
- c. Previous failed open or arthroscopic repair
- d. Prior failed thermal capsulorrhaphy
- e. Significant glenoid or humeral bone loss
- f. Irreducible chronic dislocation

### 2) Major procedures: capsular, subscapularis, and bony manipulation

- a. Capsule and labrum reattachement: Bankart and Matsen procedures
- b. Subscapularis tightening procedures: Magnuson-Stack and Putti-Platt
- c. Bone block: Eden-Hybbinette procedures
- d. Coracoid transfer: Bristow-Helfet and Latarjet

### 3) Complications after open anterior instability repair

- a. Surgical procedures: infection, hematoma
- b. Recurrence of instability: 0-30%
- c. Loss of motion: especially external rotation
- d. Capsulorrhaphy arthropathy: arise from excessive surgical tightening of anterior capsule causing obligate posterior translation with secondary degenerative joint disease
- e. Subscapularis failure
- f. Hardware complications
- g. Neurovascular injury (musculocutaneous, axillary nerve)
- \* Considerations for the choice of treatment

### Bone defect

- Compression fractures of the posterior superior humeral head (Hill-Sachs lesion) can occur in 32% to 51% of initial anterior dislocations and anteroinferior glenoid deficiency has been reported in 22%.
- 50% of patients with recurrent shoulder dislocation had bony fragments and an additional 40% had bone loss from erosion or compression.
- Burkhart and DeBeer reported a recurrence rate of 67% in patients with significant bone defects of either the glenoid or humeral head compared with 4% in those without such defects

### 1. Glenoid defect

- 79% of shoulders with recurrent dislocation revealed osseous glenoid lesion

### 1) Cartilage of glenoid lip erosion

- Loss of depth of the glenoid can be restored by repairing the labrum and capsule upon the surface of the glenoid at its lip. A labrum that is intact but not as high and stabilizing as desired can be augmented with capsulolabral plication

### 2) Glenoid labrum avulsion or small bony fragment (Bony Bankart lesion)

- Fossa deepening effect of the labrum can be restored by securely reattaching capsulolabral complex to the face of the glenoid with or without excision of the fragment

### 3) Major glenoid bone loss

- Definition of major bone loss is different according to biomechanical studies
- (1) Glenoid bone loss greater than 25% of the diameter of the inferior glenoid (inverted pear shape)
  = over 6 mm difference between the anteroinferior glenoid radius and the posteroinferior glenoid radius
- (2) Defects of 21% of the total glenoid length (distance from supraglenoid to infraglenoid tubercle) or greater
- (3) Anterior-inferior glenoid defects with a total length greater than half the maximum anterior-toposterior diameter
- Major glenoid bone loss caused continued instability and decreased range of motion after Bankart repair and treated with a bone graft placed so that the graft restore the extent of the glenoid fossa ex) Latarjet operation or autoiliac bone graft

### 2. Humeral bone loss

- Engaging Hill-Sachs lesion: the long axis of the grooved humeral head defect is parallel to the anterior rim of the glenoid when the shoulder is in the position of  $90^{\circ}$  abduction and  $90^{\circ}$  external rotation.

- Treatment of Hill-sachs lesion larger than 25% of the humeral articulating surface or engaging Hill-Sachs lesion with or without associated glenoid bone loss
- (1) Restricting the external rotation of the arm sufficiently to prevent the Hill-Sachs lesion from engaging
- (2) Restoring the articular arc defect of the humerus by bone grafting with allograft
- (3) Performing a proximal humeral osteotomy
- (4) Infraspinatus tendon transfer
- (5) Arthroplasty

### Age

- Acute traumatic shoulder dislocation in the patient over 40 years has more associated injury than that in young patients because of different injury mechanism
- : rotator cuff tear-40~80% in patients age 60 years and older greater tuberosity fractures-15~40%
- Incidence of redislocation is less than 15% in the patients over 40 years of age.
- Repair of the rupture of the rotator cuff alone can provide stability and relief of symptoms without addressing the labrum in acute traumatic shoulder dislocation in old age.
- In the recurrent shoulder dislocation in old age patients, the effect of Bankart repair is controversial.

### Duration

### 1. Acute dislocation

### 1) Closed reduction

- Many reduction maneuvers have been successfully performed with appropriate muscle relaxation (intravenous/intra-articular analgesia injection, brachial plexus block or general anesthesia)
- : traction-countertraction method, Stimson's, Milch, Spaso technique

### 2) Conservative treatment

- Evaluation: plain radiographs (adequacy of reduction, associated fracture, loose body)

: neurologic examination

- Protection and rehabilitation
  - : 75% success rate by physical therapy in Navy Academy

### 3) Surgical treatment

- High recurrence rate in patients younger than 30 yrs (40~92%)
- : 87% had Bankart lesion after first dislocation
- Recurrent rate: conservative (47~67%), athroscopic Bankart repair (15%)
- West Point study: recurrent rate in first time dislocation in young patients showed 80% for the

nonsurgical group within two years, on the other hand, 90% of arthroscopically treated patients to be stable, and permitting return to sports within 2 years.

- Indications for early surgery in primary dislocation
- (1) Soft tissue interposition
- (2) Displaced fracture of the greater tuberosity
- (3) Glenoid rim fracture
- (4) Special problems: high risk patients of recurrence

### 2. Chronic dislocation

- The treatment of choice will depend on the size of the defect, the time from injury, the condition of the humeral head and glenoid, and the patient's medical status.

### 1) Nonoperative treatment

- Careful evaluation of preoperative radiographs must be done to ensure that there are not associated fractures.
- Closed reduction can be performed less than 3 weeks after dislocation. But old age, chronicity of dislocation and soft bone make closed reduction difficult and dangerous.
- Benign neglect may be the treatment of choice in patients with little discomfort and minimal functional limitation or poor medical conditions (high risk for surgery).

### 2) Open reduction

- If the impaction fracture of the humeral head involves more than 25% of the articular surface or dislocation more than 3 weeks old
- (1) Glenoid defect: <20%-capsulolabral repair (Bankart)

20-50%- capsulolabral repair with bone graft (Latarjet)

- >50%-bone graft and total shoulder replacement
- (2) Humerus defect: <25%-bone graft, tendon transfer

### >50%-hemiarthroplasty

(3) Dislocation more than 6 months: total shoulder replacement

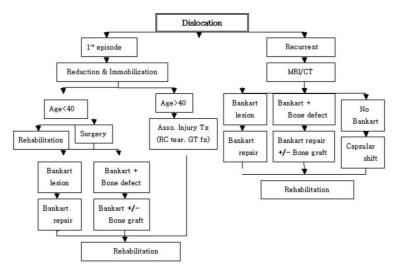



Fig. 1. Algorithm for treatment of shoulder dislocation

### REFERENCES

- 1. Arciero RA, Wheeler JH, Ryan JB, Mcbride JT: Arthroscopic Bankart repair versus nonoperative treatment for acute, initial anterior shoulder dislocations. Am J Sports Med, 22:589-594, 1994.
- Aronen JG, Regan K: Decreasing the incidence of recurrence of first time anterior shoulder dislocations with rehabilitation. Am J Sports Med, 12:283-291, 1984.
- Bottoni CR, Smith EL, Berkowitz MJ, Towle RB, Moore JH. Arthroscopic versus open shoulder stabilization for recurrent anterior instability: A prospective randomized clinical trial. Am J Sports Med, 34:1730-1737, 2006.
- Burkhart SS, DeBeer JF: Traumatic glenohumeral bone defects and their relationship to failure of arthroscopic Bankart repairs: Significance of the inverted-pear glenoid and the humeral engaging Hill-Sachs lesion. Arthroscopy, 16:677-694, 2000.
- Cole BJ, L'Insalata, Irrgang J, Warner JJ: Comparison of arthroscopic and open anterior shoulder stabilization. A two to six-year follow-up study. J Bone Joint Surg, 82-A:1108-1114, 2000.
- Edwards TB, Boulahia A, Walch G: Radiographic analysis of bone defects in chronic anterior shoulder instability. Arthroscopy, 19:732-739, 2003
- Gerber C, Nyffeler RW. Classification of glenohumeral joint instability. Clin Orthop Relat Res, 65-76, 2002.
- Green MR, Christensen KP: Arthroscopic versus open Bankart procedures: A comparison of early morbidity and complications. Arthroscopy, 9:371-374, 1993.
- Hovelius L. Anterior dislocation of the shoulder in teenagers and young adults. J Bone Joint Surg, 69-A:393-399, 1987.
- Itoi E, Sashi R, Minagawa H, Shimizu T, Wakabayashi I, Sato K: Position of immobilization after dislocation of the glenohumeral joint. A study with use of magnetic resonance imaging. J Bone Joint Surg, 83-A:661-667, 2001.
- 11. Kim SH, Ha KI, Cho YB, Ryu BD, Oh I. Arthroscopic anterior stabilization of the shoulder: Two to sixyear follow-up. J Bone Joint Surg, 85-A:1511-1518, 2003.

- 12. Kirkley A, Werstine R, Ratjek A, Griffin S: Prospective randomized clinical trial comparing the effectiveness of immediate arthroscopic stabilization versus immobilization and rehabilitation in first traumatic anterior dislocations of the shoulder: Long=term evaluation. Arthroscopy, 21:55-63, 2005
- 13. Kropf EJ, Tjoumakaris FP, Sekiya JK: Arthroscopic shoulder stabilization: Is there ever a need to open? Arthroscopy, 23:779-784, 2007.
- 14. Lo IK, Parten PM, Burkhart SS: The inverted pear glenoid: An indicator of significant glenoid bone loss. Arthroscopy, 20:169-174, 2004.
- 15. Meehan RE, Petersen SA: Results and factors affecting outcome of revision surgery or shoulder instability. J Shoulder Elbow Surg, 14:31-37, 2005.
- 16. Montgomery MH Jr, Wahl M, Hettrich C, Itoi E, Lippitt SB, Matsen FA III: Anteroinferior bonegrafting can restore stability in osseous glenoid defects. J Bone Joint Surg, 87-A:1972-1977, 2005.
- 17. Rowe CR, Patel D, Southmayd WW: The Bankart procedure: A long-term end-result study. J Bone Joint Surg, 60:1-16, 1978.
- 18. Simonet WT, Cofield RH: Prognosis in anterior shoulder dislocation. Am J Sports Med 12:19-24, 1984.
- 19. Stein DA, Jazrawi L, Bartolozzi AR: Arthroscopic stabilization of anterior shoulder instability: A review of the literature. Arthroscopy 18:912-924, 2002.
- 20. Uhurchak JM, Arciero RA, Huggard D, Taylor DC: Recurrent shoulder instability after open reconstruction in athletes involved in collision and contact sports. Am J Sports Med, 28:794-799, 2000.
- Warner JJP, Gill TJ, O' Holleran JD, Pathare N, Millett PJ: Anatomical glenoid reconstruction for recurrent anterior glenohumeral instability with glenoid deficiency using an autogenous tricortical iliac crest bone graft. Am J Sports Med, 34:205-212, 2006.