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Abstract. The BMAP/M/N/0 queueing system operating in Markovian random environment 1S
investigated. The stationary distribution of the system is calculated. Loss probability and other
performance measures are calculated. Numerical experiments which show the necessity of taking into

account the influence of random environment and correlation in input flow are presented.
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1. Introduction

At the beginning of 20th century Danish engineer A. K. Erlang laid the foundation of the queueing
theory. He investigated the queueing system M/M/N/0 which was a good mathematical model of that time
telephone networks. Erlang's formula for a loss probability in the M/M/N/0 queue serves for needs of the
practical engineering until now.

However, the flows in the modern telecommunication networks have lost the nice properties of their
predecessors in the old classic networks. In opposite to the stationary Poisson input (stationary ordinary
input with no aftereffect), the modern real life flows are non-stationary, group and correlated. The BMAP
(Batch Markovian Arrival Process) was introduced by D. Lucantoni [1] as one of the appropriate models
of such inputs. The Erlang loss model for the case of the BMAP input was investigated in [2]. The
numerical experiments presented in [2] show an essential difference of loss probability in M/M/N/0 and
BMAP/M/N/Oqueueing systems with equal intensity of input flows. That confirms the neéessity to take
into account the correlated bursty traffic in modern telecommunication networks. The extension of the
BMAP/M/N/0 model to the case of PH (Phase-type) service time distribution was considered in [3].

In the present paper we extend BMAP/M/N/0 model assuming that the system has R different modes of
operations, and the modes are switched by an external random process, so called random environment.

The considered queueing model has a wide range of potential applications because in practical systems
the input and service processes are not absolutely stable, they are influenced by external factors, e.g., the
different level of the noise in the transmission channel, hardware degradation and recovering, change of

the distance by a mobile user from the base station, etc.

2. Mathematical Model

We consider an N-server queueing system. The behavior of the system depends on the state of the
stochastic process (random environment) %> ¢20, which is assumed to be an irreducible continuous

ttme Markov chain with the state space {l...,R}, R =2,and the infinitesimal generator Q.

-461 -



The input flow into the system is the following modification of the well-known (see, e.g., [1]) BMAP.
In this input flow, the batch arrivals are directed by the process Vi» 20 (the directing process) with the

state space {0.1,... W}, Under the fixed state rof the random environment, this process behaves as an

irreducible continuous time Markov chain. Transitions of the chain V> 2 0, which are not
. . . . D" . . :
accompanied by arrival, are described by the matrix Do > and transitions, which are accompanied by

amval of k-size batch are descnbed by the matrix DY, k21, r=LR The matnx DY (1) is an

u'reduc1ble generator for all ” =L R. Under the ﬁxed state r of the random env1ronment the average
intensity A’ (fundamental rate) of the BMAP is defined as A7 =0(D"(2)) |, € and the intensity
A7 of batch amivals is defined as A” =0”(-D{)e. Here 6 is the solution to the equations

0°D”(1)=0, §Ve=1, e is a column vector of appropriate size consisting of 1's. The variatio_n

(r) r rgfr r
coefficient Cvar of intervals between batch arrivals is given by (€)’ =470 (-D”)"e~1, while the

(r) : : . .
correlation  coefficient Ccor of intervals between successive batch arrivals is calculated as

g: “(/l(r)a(r)( D(r))*l(Dm(l) D(r))( D(r)) €- 1)/(023)2'The state of the process V> 120, s not

changed at the epochs of the process 7> 20, transitions.

The system under consideration has no waiting space. So, if the system has all servers being busy at a
batch arrival epoch, the batch leaves the system forever and considered to be lost. If there are free servers
at arrival epoch, however the number of these servers is less than the number of customers in the group so
called partial admission discipline is used. It means that only a part of the group corresponding to a
number of free servers is allowed to enter the service while the rest of the group is lost. It is assumed that

all servers are identical and operate independently of each other. Service time of a customer by a server

has an exponentral dlstnbutlon of mtensuy A7 under the state r of the random environment. Qur aim 18

to calculate the statlonary state dlstrlbutmn and main performance measures of the described queuemg

model.

3. Statlonary State Dlstnbutlon

It is easy to see that operation of the considered queuemg model is descnbed in terms of the

irreducible continuous-time Markov chain 6. = {i,,7,>v,}, 120, where ¢ is the number of customers in

the system (the mimber_of busy servers), /¢ is the state of random environment, 7; = I,R, and V: is.the
state of the BMAP directing process at the epoch % 2 0. Enumerate the states of the chain 5> £20 jn
the lexicographic order and form the row vectors P,» = O,N of probabilities corresponding to the state

of the first component of the process 5> 20 Denote also P =(Pos---sPy)-

The_vector P satisfies the system of linear algebraic equations of the form:

pA:O, pe:], ‘ o S _ | (1)
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where A is an infinitesimal generator of the Markov chain & 120

Let I be an identity matrix of size listed as the low index, I,=1, ® and ® be the symbols of

Kronecker's product and sum  of matrices; D, =diag{D;”, r=LR}, i=0,N-1L

—_—

D,, =diag{d D", r=LR}, [=0,N, . ) —
k=i .

Lemma 1. Infinitesimal generator A of the Markov chain has the following block structure & 120,

A= (An,n')n,n'r-T = | (2)
(D, +Q®I D, D, Dy )
#[W D0+Q®1ﬁ,—— 7 Dl DN,N—]
= 0 2ul 5 D, +Q®I; -2uly; ... Dy -2

To solve system (1) we use the effective stable procedure basing on the special structure of the matrix 4
(it is upper block hessenbergian) and probabilistic meaning of unknown vector P. Such a procedure was

done in [3]. It is briefly described in the following statement.

Proposition 1. The stationary probability vectors Pi» 1 =0, N, are calculated as follows:
p.‘ :pOFN Z:1’Na

where the matrices £/ are calculated recurrently

I-1 _ . : N-1 _
F: = (Zo,: + ZF;‘A"J )(_Au)*ls [=1,N-1, FN = (AO,N +ZF:‘A:‘,N )(_AN,N) z’
i=} i=1

the matrices A; y are calculated from the backward recursions

G, i=0], I=N-10,

Ai,N_ = As,;va i=0,N, Ay =4, + A

if+1

—_—

the matrices G:» 1=0,N—1 31e calculated from the backward recursion

N-i-1 _

Gl’ - (_’Ai+!,f+l - z Ai+l.i+l+JGi+IGi+!—l . 'GH])‘1 Ap,u: i=N “"LOa
I=1

the vector Po is calculated as the unique solution to the following system of linear algebraic equations:

p—

N
PoAoo =0, po(ZF,e+e) =1.
I=1

4. Performance Measures

Having the vector P be calculated, we are able to calculate the main performance measure of the

considered model. It is the probability Ploss that an arbitrary customer is lost in the system (loss

probability).
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Theorem 1. Loss probability Floss is calculated as follows:

1 N
Boss =1- '2_’ Z piQi,i«-le'
i=l

In trivial way we can also to calculate a number of other stationary performance measures of the

considered model.

— The probability to see I busy servers P, =p,e, i=0,N.

N

| "N, =)Yipe
- The mean number of busy servers ™ Z P

i=}

— The joint probability to see i busy servers, the random environment in the state r and the process Vi

in the state Vv

0,,_1

p@,r,v)=p| 0 [®e,, i=0,N, r=LR, v=0,W,
0,

—-r

where €, and 0, are n-dimensional column vectors consisting of units and zeros respectively.

— The joint probability to see i busy servers and the random environment in the state r

4
p,(r)= Zp(i,r,v), i=0,N, r=0,R
v=0

S. Numenical Examples

Present the results of two experiments. The goal of the first experiment is confirmation of some
intuitively clear reasoning relating the possibility of approximation of the system operating in random
environment (system in RE).

The first type approximation is described as follows. Consider R BMAFP/M/N/0 systems. Parameters
of the r-th system are defined by the parameters of the r-th operation mode. To approximate sonie
performance characteristic of the system in RE we calculate the same characteristic for each of R systems
without RE and then average them according to the stationary distribution of the RE.

The second type approximation is described as follows. The approximated characteristic is calculated as
the corresponding characteristic of an averaged BMAP/M/N/0 system. The parameters of this system are

obtained by means of averaging the corresponding parameters of the initial system in RE according to the

stationary distribution of the RE. Figure 1 illustrates the dependence of the value Piss for the system in
RE and the samevalue calculated by the first type approximation ("mixed system") and by the second type

approximation ("mixed parameters") on the RE rate. We define the random environment with different

) . k 0 k _
rates by their generators having the form 0" =0 10", where the generator o describes the RE
whose rates are comparable with the rates of input and service processes. We vary the parameter & from

-5 to 5 what corresponds to the variation of the RE rate from "very slow" (comparing the rates of input

flow, service and retrial processes) to "very fast".
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Fig. 1. Dependence of the loss probability on the RE rate

Figure 1 shows that the first type approximation is good in case of "slow RE" and the second one can be

applied in case of "fast RE". And there is an interval for RE rate (approximately the interval (-1,2)) where

we cannot use the estimates for Zloss calculated by the considered approximating models. In the second

experiment we compare the main performance measures of the original system in RE and more simple
exponential queueing systems, which can be considered as "engineer" approximations of the original
system. The first type approximate model is the system M/M/N/0 in the RE. It differs from the original
system by assumption that input flows in its modes are stationary Poisson ones whose intensities are
equal to fundamental rate of corresponding BMAPs in the original system. The second type approximate
model 1s the Erlang system M/M/N/0 whose parameters are obtained by means of averaging the
corresponding parameters of just described system M/M/N/0 in the RE according to the stationary
distribution of the RE.

Figure 2 shows the dependence of the loss probability (mean number of busy servers) on the system

load in the original system (curve 1), in the first type approximate model (curve 2) and in the second type

approximate model (curve 3).
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Fig.2. Dependence of the loss probability in the system in RE and in the exponential system on the

system load
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