제어 가능한 카메라 환경에서 실시간 관심 보행자 검출 및 추적

Real-Time Interested Pedestrian Detection and Tracking in Controllable Camera Environment

  • 이병선 (한밭대학교 정보통신전문대학원) ;
  • 이은주 (한밭대학교 정보통신전문대학원)
  • Lee, Byung-Sun (Graduate School of Information and Communication, HANBAT National University) ;
  • Rhee, Eun-Joo (Graduate School of Information and Communication, HANBAT National University)
  • 발행 : 2007.10.26

초록

본 논문에서는 실시간으로 획득된 칼라 영상에서 CMODE(Correct Multiple Object DEtection)방법을 이용하여 움직이는 다수 물체를 검출하고, 위치 정보와 색상 정보를 이용하여 관심 보행자만을 추적하는 새로운 알고리즘을 제안한다. 다수 물체가 검출되면, 사람의 구조적 특징과 형태 정보를 이용하여 나무의 흔들림이나 차량의 움직임은 제거하고 관심 보행자만을 검출한다. 검출된 관심 보행자 추적을 위한 1차 유사성 판단은 이전 관심 보행자의 무게중심과 현재 관심 보행자의 무게중심간의 거리차를 이용한다. 1차 유사성이 판단된 영역에 대하여 k-평균 알고리즘으로 세 개의 특징점을 구하고, 각 특징점의 $3{\times}3$ 영역에 대한 평균 색상값으로 2차 유사성을 판단하여 추적하도록 한다. 카메라 배율은 원거리의 보행자에 대한 추적을 용이하게 하기 위해서 조정하고, 카메라 시계(FOV: Field of View)는 보행자의 위치가 화면내의 일정 범위에 있지 않을 경우에 조정한다. 실험 결과, 제안한 CMODE 방법이 라벨링 방법보다 평균 접근 횟수가 1/4배정도 덜 접근하였으며, 평균 검출시간도 3배정도 빠르게 검출됨을 확인할 수 있었다. 나무의 흔들림으로 인한 영역이나 차량의 움직임 영역, 그림자 영역과 같이 복잡한 배경에서도 관심 보행자 검출은 평균 96.5%의 높은 검출률을 보였다. 관심 보행자 추적은 위치 정보와 색상 정보를 이용하여 평균 95%의 높은 추적률을 보였으며, 관심 보행자는 카메라 시계와 배율을 조정함으로써 연속적으로 추적할 수 있었다.

This thesis suggests a new algorithm to detects multiple moving objects using a CMODE(Correct Multiple Object DEtection) method in the color images acquired in real-time and to track the interested pedestrian using motion and hue information. The multiple objects are detected, and then shaking trees or moving cars are removed using structural characteristics and shape information of the man , the interested pedestrian can be detected, The first similarity judgment for tracking an interested pedestrian is to use the distance between the previous interested pedestrian's centroid and the present pedestrian's centroid. For the area where the first similarity is detected, three feature points are calculated using k-mean algorithm, and the second similarity is judged and tracked using the average hue value for the $3{\times}3$ area of each feature point. The zooming of camera is adjusted to track an interested pedestrian at a long distance easily and the FOV(Field of View) of camera is adjusted in case the pedestrian is not situated in the fixed range of the screen. As a experiment results, comparing the suggested CMODE method with the labeling method, an average approach rate is one fourth of labeling method, and an average detecting time is faster three times than labeling method. Even in a complex background, such as the areas where trees are shaking or cars are moving, or the area of shadows, interested pedestrian detection is showed a high detection rate of average 96.5%. The tracking of an interested pedestrian is showed high tracking rate of average 95% using the information of situation and hue, and interested pedestrian can be tracked successively through a camera FOV and zooming adjustment.

키워드