Development of Fuzzy Support Vector Machine for Pattern Classification

패턴 분류를 위한 Fuzzy Twin Support Vector machine 개발

  • 천민규 (연세대학교 전기전자공학과) ;
  • 윤창용 (연세대학교 전기전자공학과) ;
  • 김은태 (연세대학교 전기전자공학과) ;
  • 박민용 (연세대학교 전기전자공학과)
  • Published : 2007.11.02

Abstract

Support Vector Machine(SVM)은 통계적 학습 이론에 기반을 둔 분류기이다. 또한 Twin Support Vector Machine(TWSVM)은 이진 SVM 분류기의 한 종류로써, 서로 관련된 두 개의 SVM 유형 문제를 통해 평행하지 않은 두 개의 평면을 결정하고 이 두 평면을 통해 분류기를 완성하는 방식이다. 이러한 방식은 TWSVM은 학습 시간이 SVM에 비해 훨씬 짧으며, SVM과 비교하여 떨어지지 않는 성능을 보여준다. 본 논문은 분류기 입력에 Fuzzy Memvership을 적용하는 방식의 TWSVM을 제안하고, 2차원 벡터 입력에 대한 실험을 통하여 기존에 제시 되었던 TWSVM과 비교한다.

Keywords