Effect of Post-Oxidation Annealing on High-Temperature Grown SiO₂/4H-SiC Interface Jeong Hyun Moon¹, Ho Keun Song¹, Jeong Hyuk Yim¹, Myeong Suk Oh¹, Jong Ho Lee¹, Wook Bahng², Nam-Kyun Kim² and Hyeong Joon Kim¹ ¹Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Korea ²Power Semiconductor Research Group, Korea Electrotechnology Research Institute (KERI),P.O. Box 20, Changwon, Gyungnam 641-120, Korea Tel: +82-2-880-7162, Fax: +82-2-874-7626, E-mail: hjkim@plaza.snu.ac.kr¹ Metal-Oxide-Semiconductor FETs using 4H-SiC have been investigated intensively because thissemiconductor has excellent physical properties for power-device applications. However, the MOSFET is still under performed due to low channel mobility. One of the origins of the low channel mobility is attributed to high interface-trap density (D_{it}), particularly located near conduction band edge of the semiconductor. The prevailing factor contributing to this trap is due to existence of intrinsic carbon that is originated from two sources: (1) residual carbon from surface of substrate prior to oxidation and (2) carbon generated at the interface during oxidation. It has been generally accepted that SiO₂ grown from nitridation could significantly reduce this trap. Majority of these works were performed at temperature lower than 1200°C. There are limited reports on the effect of nitrided oxide, both directly grown or post-oxidation annealed, at higher temperature. Therefore, we are reporting the SiO₂-SiC interface properties of the oxide grown at 1300 and 1400 °C in dry oxygen and comparing with the properties of the oxide underwent post oxidation annealing (POA) using nitric oxide gas (NO). ^{*}This work was conducted as a part of Power IT project supported by MOCIE (Ministry of Commerce, Industry and Energy), Korea.