PD6) 황해 동부해역에서 식물플랑크톤 군집의
시공간적 분포에 미치는 환경요인에 관한 연구
박승윤, 손재경, 윤숙경, 허승, 김성진
국립수산과학원 서해수산연구소

1. 서 론

2. 제료 및 실험방법
본 연구를 위한 조사는 2005년 2월부터 2006년 4월까지 격월로 총 8회에 걸쳐 실시하였으며, 조사해역은 124°22'~126°01'E, 33°58'~36°56'N의 황해 동부 근해역으로 국립수산과학원 서해수산연구소의 서해해양조사 조사정점인 6개선 25정점에서 조사선(인천 888호, 293호)을 이용하여 수행되었다.
조사항목은 물리화학적 환경요인으로 수온, 열분, 투명도, DO, COD, SS, 영양염류(NH4-N, NO2-N, NO3-N, PO4-P, SiO2-Si), Cl, Br 등을 시험을 이용하여 현장측정 및 시료를 체집하여 전처리한 후 실험실에서 해양수산부의 해양환경공정시험법(2005)에 의거 분석하였다. 식물플랑크톤은 정량, 정성분석을 위하여 시료를 체집하여 고정한 후 실험실로 운반하여 실험실에서 광합현미경(VANOX AHBT3)하에서 검정 및 Sedgwick Rafter Counting Chamber를 이용하여 계수하였다. 수질환경과 식물플랑크톤의 연관성을 알아보기 위해 PCA(Principal component analysis)의 통계 처리를 하여 상관 상태를 추정하였고, 각 측정 항목의 시공간적인 변동을 구명하기 위하여 제1모형 이항분산분석(Two factor model
I ANOVA)을 이용하였으며, 처리효과는 조사정점(25등급)과 조사월(8가룹) 그리고 조사수 충(4등급)이고, 수질변동요인을 구명하기 위하여 적절량 수정항목간 상관분석(Spearman’s correlation analysis)을 통하여 $\alpha=0.05$ 유의 수준에서 유의성을 검증하였고, 상기의 분석은 PC SAS를 이용하였다.

3. 결과 및 요약

황해의 25개 조사정점의 표층수에 대한 해양환경요인 및 식물플랑크톤 현존량의 월별 조 사결과를 종합하여 주성분분석(PCA)을 실시한 결과 주성분 I에서는 변화를 26.6% 설명 할 수 있으며, 이중 질산질소가 가장 많이 기여하였고 이어서 융존무기질소, 규산구소, 수온, 융존산소, 알모니아질소 순으로 기여하고 있었다. 주성분 II에서는 20.3%를 설명 할 수 있으며, 이중 융존산소가 가장 많이 기여하였고 그 외 염소 a, 수온, 염분, 규산구소, 식물플 람크톤 현존량 순으로 기여하였다. 주성분 III에서는 15.1%를 설명할 수 있으며, 이중 인산 인이 가장 많이 기여하였고 그 외 염분, 아질산질소, 수온, 융존산소, 질산질소, 융존무기질 소 순으로 기여하였다. PCA에 이용된 항목 중 부유물질을 제외한 모든 항목은 주성분 I, II, III에 5%이하 유의수준에서 의미 있는 상관성이 있었다.

주성분 I 은 질산질소, 융존무기질소, 규산구소, 인산인과는 긍정적인 상관성을 (p<0.0001)을 갖고, 수온, 알모니아질소와는 부정적인 상관성을 보였다 (p<0.001). 주성분 II에서는 융 존산소, 염소 a, 식물플랑크톤 현존량은 긍정적 상관성을 나타내었고, 수온, 염분, 규산구 소와는 부정적인 상관성을 보였으며 (p<0.0001), 주성분 III에서는 염분, 수온, 질산질소, 융 존무기질소, 식물플랑크톤 현존량과는 긍정적인 상관성을 (P<0.0001)을 나타내었고 인산인, 아질산질소, 융존산소는 부정적인 상관성을 나타내었다 (p<0.01).

공간적인 분포특성은 조사정점에 따라 항목별 결과에 대한 분산이 커서 일정한 특성을 도출하기가 어려운 상태이나 대체로 PCA II축을 기준으로 상부인 1/4~2/4분면에 북부와 중부의 조사정점이 위치하고 음의 방향인 3/4~4/4분면에 중부와 남부의 조사정점이 위치하고 있어 북축의 307선과 308선 및 중부의 309선과 310선 그리고 남축의 311선과 312선으로 구분되는데, 그 중에서 대안반도의 연안역인 307선의 03점은 계절에 변화가 가장 컷터 분산의 폭이 심한 상태를 나타내어 다른 조사정점들과 구분되어있었다. 전반적으로 북축해역에서는 융존산소, 염소 a, 식물플랑크톤 현존량이 남축해역에 비해 상대적으로 많은 반면, 남측해 역은 수온과 염분 및 규산구소가 높은 상태였다. 북쪽인 307선과 308선은 연안역과 해양, 예상과 상대적으로 영양영류가 높았으며, 중부인 309선과 310선은 연안역과 준 해역인 07점과 09점에서 영양영류가 높았고, 남부 해역인 311선과 312선에서는 연안역에서 영양영류 가 상대적으로 높은 경향을 나타내었다. 즉 북동부는 연안역에서는 조식산만의 차가 심 하고, 세만급 및 시호등등과 같은 대규모의 간척 매립으로 육상의 오염원이 지속작용을 거치지 못하고 적절 연안으로 유입되고 있는 실정이다. 또한 10여 년 전부터 육지의 모래부족 으로 다량의 바다 모래가 체취되어 왔고 그 랜지 점차 증가추세이며, 중부 해역에서는 각종 페기물 투기로 점차 영양영류의 부하량이 증가되고 있어 특히 정소계획 인의 영양영류 농도가 높아지고 있는 추세이다.
시간적 변동특성은 전반적으로 순환하는 형태를 유지하고 있다. 2005년 2월에는 질산질소, 용존무기질소, 규산구소, 인산인, 용존산소가 높았으며 4월로 점어들면서 항목 간에 분산되는 경향을 보이면서 수온, 염도, a 및 식물플랑크톤이 증가 하면서 해역에 따라 좌 우로 분산가는 경향을 나타내었고 6월에는 아질산질소를 제외한 영양염류가 감소하는 경향을 보였다. 8월에는 6월에 비해 수온이 높아지고 규산구소, 질산질소, 용존무기질소 등이 약간 증가추세였으며 10월로 점어들면서 증가추세가 더 높아졌고 12월에는 질산질소, 용존무기질소, 규산구소, 인산인, 용존산소가 높아졌다. 2006년 4월에는 2005년 4월에 비해 수온, 염도, a, 식물플랑크톤의 현존량이 높아져서 전년 동시기와 약간 다른 양상을 보이고 있었다. 즉 동계인 2월로 시작으로 반 시계 또는 시계 방향으로 순환하는 형태를 유지하고 있으며, 4월을 2개년 비교해 보았을 때 해마다 해양환경에 따라 그 순환 정도 및 형태가 다름 것으로 추정된다.

감사의글

본 연구는 국립수산과학원 R&D과제인 “서해해양환경연구” 과제의 일환으로 수행된 것으로 현장조사에 적극 협조해 주신 시험조사인 탐구 8호 직원께 감사드립니다.

참고문헌

박승윤·박경수·김형철·김병증·김관동·김속양. 2006. 천수만의 수질환경특성과 장기변동. 한국환경과학회지 15: 447-460.

山田健雄. 1938. 昭和8年海洋観測成績. ブランクトン. 朝鮮水試. 海洋調査要報 No. 8: 11-90.

Kurasige, H. 1943. Quantitative and qualitative characteristics of the marine diatom in the coastal water of Taiyato at the Yellow Sea side of Tyosen, in comparison with that of Tataho Bay at the Southern coast of the Peninsula. Part 1. Bull.
Fish. Experiment Station 8: 1-114.