Nested-Hierarchical Classification

Nested-Hierarchical 분류분석

  • 이상훈 (경원대학교 산업공학과)
  • Published : 2007.03.29

Abstract

본 연구는 원격 탐사의 영상 처리에서 영상 분할의 상위 수준으로 웅집 계층 clustering의 dendrogram을 통한 무감독 영상 분류를 제안한다. 제안된 알고리즘은 분광 영역에서 정의된 RAG(Regional Agency Graph)와 min-heap 자료 구조를 이용하여 MCSNP(Mutual Closest Spectral Neighbor Pair)의 집 합을 검색하면서 합병을 수행하는 계층 clustering 방법이다. 계산 시간과 저장 기억의 사용에 대한 효율을 증가시키기 위해 분광적 인접성올 정의 하는 분광 공간(spectral space)내의 다중창을 사용하였고 RNV(Region Neighbor Vector)을 이용하여 합병에 의하여 변하는 RAG 갱신하였고 적정한 단계 수가 주어 진다면 제안된 알고리즘은 집단 합병의 계층적 관계를 쉽게 해석 할 수 있는 dendrogram을 생성한다. 본 연구는 생성된 dendrogram을 이용한 nested-hierarchical 분석을 통하여 피복 형태의 계층적 관계를 해석한다. 이러한 해석은 피복 형태의 정확한 분류를 위한 의사 결정에 중요한 정보를 공급한다.

Keywords