
Jinwook Kim · Soojae Kim · Heedong Ko · Demetri Terzopoulos

Fast GPU Computation of the Mass Properties of a
General Shape and its Application to Buoyancy Simulation

Abstract To simulate solid dynamics, we must com-
pute the mass, the center of mass, and the products of
inertia about the axes of the body of interest. These
mass property computations must be continuously re-
peated for certain simulations with rigid bodies or as
the shape of the body changes. We introduce a GPU-
friendly algorithm to approximate the mass properties
for an arbitrarily shaped body. Our algorithm converts
the necessary volume integrals into surface integrals on
a projected plane. It then maps the plane into a frame-
buffer in order to perform the surface integrals rapidly
on the GPU. To deal with non-convex shapes, we use a
depth-peeling algorithm. Our approach is image-based;
hence, it is not restricted by the mathematical or geo-
metric representation of the body, which means that it
can efficiently compute the mass properties of any ob-
ject that can be rendered on the graphics hardware. We
compare the speed and accuracy of our algorithm with an
analytic algorithm, and demonstrate it in a hydrostatic
buoyancy simulation for real-time applications, such as
interactive games.

Keywords General-purpose computation on GPUs ·
Mass property computation · Physics-based animation ·
Rigid-body dynamics · Buoyancy simulation

J. Kim, S. Kim, H. Ko
Imaging Media Research Center
Korea Institute of Science and Technology
39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, Korea
E-mail: {jwkim, lono, ko}@imrc.kist.re.kr

D. Terzopoulos
Department of Computer Science
University of California
Los Angeles, CA 90095, USA
E-mail: dt@cs.ucla.edu

1 Introduction

The fast calculation of mass properties, including the
mass, center of mass, and products of inertia, is neces-
sary for the dynamic simulation of solids. In rigid body
dynamics, the mass properties are usually assumed to
be constant during the simulation. Therefore, the com-
putation can be performed in an initialization step and
the computed values are used in the subsequent simu-
lation. Hence, the computational cost to calculate mass
properties is often negligible. In certain important cases,
however, the mass properties can change during the sim-
ulation and complex geometric shapes may require ex-
pensive mass property computations.

Among these cases is the simulation of hydrostatic
buoyancy. Buoyancy is a natural phenomenon resulting
from the interplay between a fluid system and a floating
rigid body system. If we assume a hydrostatic pressure
condition for the fluid system, then we can simulate the
motion of the rigid body floating in the fluid by applying
a buoyant force to the center of mass of the instanta-
neous submerged volume, which is known as the center
of buoyancy. The buoyant force itself is proportional to
the instantaneous submerged volume. A problem here,
of course, is that the submerged volume changes contin-
uously. Consequently, the computation of its mass prop-
erties can be a major bottleneck of the simulation.

Most of the research in computing the mass proper-
ties of solid shapes can be applied only to specific solid
representation schemes and, therefore, it may involve an
expensive representation conversion process [11]. Gon-
zalez et al. [6] combined a polynomial free-form surface
representation with the Gauss divergence theorem to ef-
ficiently calculate the moments of the enclosed object.
However, their approach allows only piecewise polyno-
mial surface patches. Mirtich [13] proposed an efficient
method to compute the center of mass and higher-order
moments for polyhedral objects. The proposed algorithm
is based upon a three step reduction of the volume in-
tegrals to successively simpler integrals. The final step
of the algorithm computes the required integrals over a

3권 326

2 Jinwook Kim et al.

face from the coordinates of the projected vertices. This
means that the computation is done by algebraic oper-
ations with vertex coordinate values. Even though this
method is computationally efficient for fixed polyhedral
objects, its efficiency can suffer if the geometric struc-
ture changes frequently as it may require an expensive
reconstruction of a set of vertices and faces. Unfortu-
nately, the typical situation in buoyancy simulations re-
quires repeated updates of vertex coordinates and even
of the number of relevant vertices. This is because the
submerged volume is defined as the intersection of a ge-
ometric object representing the fluid system with a geo-
metric object representing the floating rigid body.

In this paper, we propose a GPU-friendly algorithm
to compute the mass properties determined by general
geometries. Our approach is essentially image-based. Be-
cause of this, it is not restricted by the mathematical or
geometric representation of rigid bodies. Regardless of
the geometric representations employed, whether they be
polyhedral approximation, free-form surfaces, construc-
tive solid geometry, etc., if it is possible to render an
object of interest on the GPU, then our algorithm can
approximate the object’s mass properties, exploiting the
efficiency of the GPU.

Recent advances in the programmability of graph-
ics hardware have enabled its use for general purpose
computation, not restricted to rendering [16]. Various
problems in scientific computation, including fluid dy-
namic simulation, the solution of linear systems of al-
gebraic equations, nonlinear optimization, and volume
rendering, have been addressed by taking advantage of
the parallelism and programmability of GPUs [1,7–9,14,
17]. Moreover, programmable GPUs are getting faster
and cheaper. Our algorithm accrues these benefits by
exploiting the GPU to calculate mass properties. It first
computes the mass, the center of mass, and the products
of inertia by reducing volume integrals into surface inte-
grals. It projects surfaces of the rigid body onto a plane
that corresponds to the frame buffer of a rendering pro-
cess. Next, it computes the integrands on the GPU. Fi-
nally, it performs a summation operation using a buffer
reduction to obtain the desired result.

To perform the required integral operations over all
the surfaces representing the non-convex geometric ob-
ject, we use a depth-peeling algorithm to obtain each of
the surface patches regardless of convexity. The depth-
peeling is a fragment level depth sorting algorithm, which
achieves a correct rendering of transparent objects that
are located order independently [4,12]. The objective
of the method is to find the fragments of geometry in
a systematic manner. We focus our attention on this
method because it can access all the fragments represent-
ing the geometry regardless of its convexity. We modify
the original depth-peeling algorithm to obtain surface
peels, which are surface patches beneath the fluid in our
buoyancy simulation, as well as the intersection surface
between the fluid and the rigid body.

The remainder of the paper is organized as follows:
Section 2 reviews rigid body mass properties and derives
them in the form of surface integrals over the projected
plane. Section 3 introduces our GPU-friendly algorithm
for computing the mass properties determined by non-
convex geometry. Section 4 presents an error and perfor-
mance analysis of our approach compared to the analytic
method proposed by Mirtich [13]. Section 5 modifies an
original depth-peeling algorithm to deal with hydrostatic
buoyancy simulation and shows an example of interactive
rigid body dynamics simulation under buoyancy. Finally,
Section 6 draws conclusions from our work.

2 Rigid body mass properties

2.1 Computing mass properties with volume integrals

The mass of a rigid body is given by

m =
∫

V

ρ(x, y, z) dV, (1)

where ρ(x, y, z) is the mass distribution function of the
body and V is its volume. If we assume ρ(x, y, z) to be
constant over the volume, the expression for the mass
simplifies to m = ρV . In this paper, the mass distri-
bution function will be considered a constant value for
simplicity.

The center of mass r and the inertia tensor I are
given by

r =
1
V

∫

V

⎡
⎣

x
y
z

⎤
⎦ dV,

I = ρ

∫

V

⎡
⎣

(y2 + z2) −xy −xz
−yx (z2 + x2) −yz
−zx −zy (x2 + y2)

⎤
⎦ dV.

(2)

2.2 Reduction to surface integrals on a projected plane

To calculate the mass properties of a rigid body effi-
ciently, we exploit the divergence theorem as suggested
by Gonzalez et al. [6]. According to the divergence theo-
rem, an integral over the three-dimensional volume can
be transformed into an integral over its boundary surface
as follows:

∫

V

∇ · f dV =
∫

∂V

f · n dA, (3)

where f is a continuously differentiable vector field de-
fined on a neighborhood of V , where n = [nx, ny, nz]′
denotes the exterior normal vector of V along its bound-
ary ∂V, and where dA is the infinitesimal surface area
of the boundary. When the volume is represented by a
bounding polyhedron, its boundary is the set of planar

3권 327

Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy Simulation 3

polygons comprising its faces. If we set f = [0, 0, z]′, then
we obtain the volume as V =

∫
∂V

znz dA. Similarly,
setting f in turn to [0, 0, xz]′, [0, 0, yz]′, and [0, 0, 1

2z2]′

yields
∫

V
xdV =

∫
∂V

xznz dA,
∫

V
y dV =

∫
∂V

yznz dA,
and

∫
V

z dV =
∫

∂V
1
2z2nz dA, respectively.

Now, we slightly modify (3) by projecting the bound-
ary surface area element dA onto the xy plane. From Fig-
ure 1, we see that the relationship between the infinitesi-
mal surface area dA and the projected surface area dx dy
is dx dy = |nz| dA if the surface normal vector has unit
length.

Fig. 1 Projection of the infinitesimal surface area element.

Finally, we obtain the volume V and the center of
mass r = [rx, ry, rz]′ as follows:

V =
∫

∂V

sgn(nz)z dx dy,

rx =
1
V

∫

∂V

sgn(nz)xz dx dy,

ry =
1
V

∫

∂V

sgn(nz)yz dx dy,

rz =
1

2V

∫

∂V

sgn(nz)z2 dx dy,

(4)

where sgn(x) denotes the signum function which extracts
the sign of a real number x. Note that the integrals are
computed on the planar surface area, which is achieved
by projecting the surface boundary onto the xy plane.
When the surface area element dA is projected on the xy
plane, it will be singular if nz = 0. Hence, an improper
choice of f (e.g., f = [x, 0, 0]′ to compute the volume)
can lead to a singularity at the boundary of a projected
surface, where it would require division by a very small
number. Our proposed fs, however, only require multipli-
cation by sgn(nz), thus avoiding the singularity problem
at the boundaries.

The inertia tensor I is

I = ρ

⎡
⎣

Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

⎤
⎦ , (5)

where the moments and products of inertia are similarly
given as follows:

Ixx =
∫

∂V

sgn(nz)x2z dx dy,

Ixy =
∫

∂V

sgn(nz)xyz dx dy,

Iyy =
∫

∂V

sgn(nz)y2z dx dy,

Ixz =
1
2

∫

∂V

sgn(nz)xz2 dx dy,

Iyz =
1
2

∫

∂V

sgn(nz)yz2 dx dy,

Izz =
1
3

∫

∂V

sgn(nz)z3 dx dy.

(6)

3 Computing mass properties on the GPU

3.1 Shader implementation

The programmability of recent graphics hardware and
the various choices of precision and formats of frame-
buffers enable us to implement mass property compu-
tations on GPUs in an easy and flexible way. The in-
tegrands in equations (4) and (6) can be evaluated dis-
cretely at each pixel in a framebuffer by GPU program-
ming. The process is straightforward:

1. Render the geometry with an orthographic projection
onto the xy plane;

2. Evaluate the integrands on a fragment shader;
3. Encode the evaluated values at the output buffers.

The number of parameters that must be computed
is 10 in total, including 1 for volume, 3 for the center of
mass, and 6 for the moments and products of inertia. To
store these parameters, we use three framebuffers, each
of which can contain four values in the red, green, blue
and alpha channel. This can be efficiently implemented
using the “multiple render target” capability of recent
graphics hardware, which enables the fragment shader
to save per-pixel data in multiple buffers.

Hence, we obtain color buffers containing the values
of integrands in equations (4) and (6). Furthermore, the
integration of the values over the projected plane area
can be performed by reading back fragment color values
of the framebuffers and summing them up, or by using
a buffer reduction algorithm as will be explained in the
next section. A fragment shader can be implemented in
the OpenGL Shading Language [15] very easily, as fol-
lows:

3권 328

4 Jinwook Kim et al.

// homogeneous coordinate of a point on the surface
varying vec4 p;

// z component of the surface normal
varying float n_z;

void main(void)
{
float c = sign(n_z) * p.z;

// (rx, ry, rz, V)
gl_FragData[0] = c * p;

// (Ixx, Ixy, Ixz, .)
gl_FragData[1] = p.x * gl_FragData[0];

// (Iyy, Iyz, Izz, .)
gl_FragData[2] = c * vec4(p.y * p.y, p.y * p.z, p.z * p.z, 0);

}

Note that the fourth components of gl FragData[1] and
gl FragData[2] are not used.

A potential problem is how to generate color buffers
covering all the surface fragments of the geometric shape.
Consider the case of a sphere. The surface of a sphere
can be divided into two patches—the north and south
hemispheres—according to the direction of surface nor-
mals. If we look at the sphere from the negative z view-
ing direction, the line of sight will intersect the sphere
twice. That is, the typical rendering pipelines will ren-
der two fragments from those two surface patches on
one pixel in the framebuffer and, therefore, the resulting
color buffer will contain only one of the fragments from
the two surface patches regardless of the choice of the
depth test function. To resolve this problem, we use the
depth-peeling algorithm discussed in the next section.

3.2 Depth-peeling

Using the standard depth test function of the 3D graph-
ics API, we can obtain the nearest surface fragment from
the eye at each pixel. Although the second nearest or
other fragments may be required in some areas, there is
no straightforward way to obtain the nth nearest frag-
ment. One possible solution is to use a depth-peeling
algorithm, which is a fragment-level depth sorting tech-
nique [12]. Depth-peeling can be implemented as a multi-
pass algorithm. In the first rendering pass, the geometries
are rendered using a normal “less-than” depth function.
This will yield a depth buffer containing the depth values
of the nearest surface of the geometry. In the next ren-
dering pass, only the fragment for which depth is greater
than the depth values in the buffer from the previous
pass are rendered. Then the depth buffer will contain the
depth values of the next nearest surface of the geometry,
and so on. The process repeats until the depth values of
all the surface fragments are found. The depth-peeling
technique introduced by Everitt [4] requires a shadow
buffer to peel away the surfaces by comparing depth
values. However, since recent GPUs and APIs support
“render-to-texture” capabilities and the direct manipula-
tion of pixel values on fragment processors using shading

languages, depth-peeling can be implemented using pro-
grammable GPUs and the modification of the algorithm
is even easier.

For our objective of computing mass properties, we
can apply the standard depth-peeling algorithm with the
shader developed in the previous section. As a result, we
obtain n textures containing the enumerated integrands
in equations (4) and (6), where n is a total number of
peels.

3.3 Two-dimensional integrals over the projected area
using buffer reduction

Using the textures obtained in the previous section, we
compute the two-dimensional integrals over the projected
surfaces in order to obtain mass properties. A straight-
forward way to perform the integration is to read all
evaluated integrands from framebuffers and sum them.
Given current graphic memory interfaces, however, read-
ing back a texture memory directly into system memory
can yield significant latency. To tackle this problem, we
use buffer reduction [2]. To summarize the buffer reduc-
tion technique, a fragment program reads two or more
values from the buffer and computes a new value using
the reduction operator, which in our case is an addition
operation. These passes continue until the output is re-
duced to a single value, the sum. In general, this process
takes O(log n) passes, where n is the number of elements
to reduce. Figure 2 illustrates a reduction operation to
calculate the sum.

2 3 4 15 6 23 24 15

14 4 3 2 3 16 13 17

12 6 5 3 8 4 12 17

3 9 8 6 14 13 15 26

5 8 9 11 8 16 18 21

11 14 12 27 24 12 23 16

23 3 6 17 24 16 5 18

19 15 13 15 4 17 24 9

23 24 48 69

30 22 39 70

38 59 60 78

60 51 61 56

8X8 4X4 2X2 1X1

Fig. 2 Summation reduction procedure.

4 Performance

In this section, we compare our algorithm in terms of ac-
curacy and speed with the analytic method developed by
Mirtich [13]. Since the analytic method used in this test
is restricted only to polyhedra, we use shapes approxi-
mated by polyhedra as test objects. Figure 3 illustrates
some of these objects. It is important to note, however,
that our algorithm can be applied to any model that can
be rendered on graphics hardware. All the tests were run
on a 2.53GHz Pentium 4 CPU with an NVIDIA GeForce
7800 GTX GPU. 32-bit floating point textures were used
for framebuffers. Table 1 lists all the geometric test ob-
jects and the number of peels for each test object.

3권 329

Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy Simulation 5

knot bunny pipe

Fig. 3 Some polyhedral test objects.

object vertices faces peels
cube 8 12 2

sphere 422 840 2
teapot 821 1628 6
torus 1024 1922 4
knot 1440 2880 8

bunny 2557 5110 6
pipe 4626 9252 6

Table 1 Geometric information for the test objects.

4.1 Error analysis

We measured the relative error of the mass and the mo-
ments of inertia Ixx, Iyy, and Izz at various framebuffer
resolutions. The other mass property values are very
small for our test objects, because the shapes are approx-
imately symmetric along axes. Our approach computes
integrands for each fragment on the GPU, where we use
texture memories as framebuffers. Hence, the resolutions
of the framebuffers are critical for accurate results. As
shown in Figure 4, a resolution of 32×32 was sufficient
to compute the mass properties within a 5% error bound.

4.2 Performance analysis

We now compare the performance of our algorithm and
the analytic method. If we assume that the cost of ver-
tex processing on the GPU is negligible compared to the
cost of fragment processing, the complexity of our algo-
rithm is approximately O(kn2), where k is the number
of rendering passes for the depth-peeling and n is the
framebuffer resolution along its width or height. On the
other hand, the complexity of the analytic method is
O(m), where m represents the number of faces of the
polyhedron. Figure 5 shows a comparison of the compu-
tation times for the analytic method and our GPU-based
method at three different framebuffer resolutions.

We observed that our GPU-based approach is compa-
rable to the analytic method in terms of computational
cost. At 64×64 resolution, our algorithm outperforms the
analytic method for moderately complex shapes such as
the bunny or the pipe. However it also shows the down-
side of quadratic complexity for a resolution of 128×128
or more. For example, it is obvious that the analytic
method is preferable to our GPU-based method for low-
polygon-count models such as a cube. The computational

cube mass cube Ixx cube Iyy
cube Izz sphere mass sphere Ixx
sphere Iyy sphere Izz teapot mass
teapot Ixx teapot Iyy teapot Izz

16

64

256

32

128

torus mass torus Ixx torus Iyy torus Izz
knot mass knot Ixx knot Iyy knot Izz
bunny mass bunny Ixx bunny Iyy bunny Izz
pipe mass pipe Ixx pipe Iyy pipe Izz

64
32

128
256

16

Fig. 4 Relative error comparisons.

Fig. 5 Computational time comparison of analytic method
and GPU-based method.

3권 330

6 Jinwook Kim et al.

cost of the analytic method for the cube is so small that
we could not distinguishably display it in the graph.

5 Case study: Buoyancy simulation

The beauty of our image-based approach is that it is not
restricted to any particular mathematical or geometric
shape representation. It can efficiently compute the mass
properties of arbitrary objects, so long as they can be
rendered efficiently on graphics hardware. As an example
application of our algorithm, we will now demonstrate an
interactive, hydrostatic buoyancy simulation.

5.1 Hydrostatic buoyancy

One of the most popular simplifications of fluid motion
is the shallow water model [10] which assumes zero vis-
cosity and considers only two-dimensional motions. An
interesting fact of the shallow water model is that the
pressure field is characterized by the hydrostatic equilib-
rium condition:

p = ρgh, (7)

where g is the gravitational acceleration and h is the
depth of the fluid. This very simple pressure model works
well with the shallow water model, and it corresponds
exactly to the observation of Archimedes.

According to Archimedes’ principle, a body immersed
in a fluid experiences a vertical buoyant force equal to the
weight of the fluid that it displaces. The buoyant force
acts on the center of mass of the submerged volume.
Figure 6 illustrates a rigid body partially immersed in a
fluid. Assuming a stationary fluid system, two forces are
acting on the body at this instant. The first is the force
of gravity that acts downwards at the center of gravity
C, while the second is a buoyant force which acts up-
wards at the center of buoyancy B, which is the center
of mass of the immersed part of the rigid body (assum-
ing that the immersed portion consisted of fluid). The
magnitude of the buoyant force is proportional to the
weight of the submerged volume of fluid. The imbalance
between gravity and the buoyant force induces a torque
that will rotate the body to restore a static equilibrium.

The simulation of fluid motion is out of the scope of
our work.1 Instead we focus on the rigid body motion of
an object floating on fluid due to the hydrostatic buoy-
ant force. To simulate hydrostatic buoyancy, we compute
the volume and the center of mass of the submerged part

1 Foster and Metaxas [5] demonstrate a simplified scheme
for coupling buoyant objects to the results of a Navier-Stokes
fluid simulation. Carlson et al. [3] simulate the interplay be-
tween rigid bodies and viscous incompressible fluid.

Fig. 6 Buoyant force and gravity acting on a partially sub-
merged rigid body.

of the body at every simulation time instant. If the ge-
ometries of a fluid body and a rigid body are compli-
cated, calculating their intersection requires a consider-
able amount of computation and can become a bottle-
neck in the simulation process. In the following section,
we tackle this problem by modifying the depth-peeling
algorithm.

5.2 Boundary surfaces of an intersection volume of a
non-convex geometry and a fluid surface

We improve the original depth-peeling technique to ac-
count for all the projected fragments of the geometry be-
low the fluid surface. For simplicity, let us assume that
the signs of the z components of the fluid surface normal
vectors do not change. Our algorithm considers surfaces
from the rigid body and the fluid surface intersecting the
geometry separately. The multi-pass rendering procedure
to handle the surfaces of a submerged volume is as fol-
lows (note that an orthographic projection is applied to
render the scene with the negative z viewing direction as
shown in Figure 7):

Fig. 7 Multi-pass rendering to obtain all surface patches.

3권 331

Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy Simulation 7

Pass 0: Render the surface of the fluid, storing its depth
values into a texture Tdw as a reference.

Pass 1: Render the object geometry to a texture T1. In
our fragment shader, the integrands in equation (4)—
i.e., sgn(nz)xz, sgn(nz)yz, sgn(nz)z2, and sgn(nz)z—
are evaluated and the output color is composed of
their values. Also, the depth values are stored in a
texture Td1. During this rendering pass, the frag-
ments whose depth value is less than the fluid sur-
face depth are discarded to inhibit the operation.
The texture Tdw generated in rendering Pass 0, is
used to lookup the depth value of the fluid surface.
In Figure 7, the solid black lines correspond to the
fragments.

Pass 2: Render the geometry to a texture T2. As in the
previous rendering pass, the integrands are evaluated
and their values are assigned to the output color.
Here, only the fragments whose depth value is greater
than the fluid surface depth and the depth value of
Td1 are accepted in order to peel away the surface
patch obtained in the previous rendering pass. In
Figure 7, the dashed lines indicate peeled away frag-
ments. A depth texture Td2 is initialized with Td1 and
overwritten with the depth values of the currently
processed fragments.

Pass n: Repeat the same process as in rendering Pass
2 until all the object fragments are found and evalu-
ated.

Thus, we obtain n textures, and the texture Tn contains
the evaluated integrands of the nth surface patch.

Now, the only remaining surface patch is the fluid
surface intersecting with the rigid body geometry. As
illustrated in Figure 8, the surface patches of rendering
Pass 1 consist of upward and downward faces. The fluid
surface intersecting with the rigid body geometry can
be obtained by drawing the fluid surface only for those
fragments having a downward normal in rendering Pass
1. Note that a more efficient implementation results if the
fragment shader can write a stencil bit into the output
framebuffer in rendering Pass 1. Finally, we evaluate the
integrand for the fluid surface patch intersecting the rigid
body geometry and write the value in a texture Tw.

In summary, our algorithm requires a total of n + 2
rendering passes to cover all the surface patches of a
partially submerged rigid body geometry, where n rep-
resents the maximum number of intersection points of
the submerged part of the geometry with the z axis. The
first rendering pass generates a reference depth texture
from the fluid surface. In the next n rendering passes, in-
tegrands are evaluated for each fragment of the geometry
surface and the resulting values are stored in textures Ti.
The final rendering pass evaluates the integrand for the
fluid surface patch that intersects the rigid body geome-
try and stores the values in a texture Tw.

Finally, we apply the summation reduction procedure
described in Section 3.3 to evaluate the integral expres-
sions for the volume of the immersed portion of the ob-

Fig. 8 Intersecting the surface of the fluid body with a rigid
body.

ject and the center of buoyancy in order to evaluate the
buoyant force and its point of application in the object.

5.3 Simulation example

Fig. 9 Interactive simulation of 50 rigid bodies floating in
water.

Figure 9 shows a typical scene from our interactive
simulations of buoyant objects. Ten spheres, 10 rectan-
gular boxes, 10 tori, 10 teapots, and 10 Stanford bun-
nies were tested. Boxes with density higher than that
of the water were observed to sink as expected. We also
modeled a viscous drag force acting at the center of buoy-
ancy with magnitude proportional to the submerged vol-
ume and the square of the body velocity. The simulation
runs on the CPU of a 2.53GHz Pentium 4 PC employ-
ing an NVIDIA GeForce 7800 GTX GPU. The average
frame rate of the example shown in the figure was 16
frames/sec. Over 90% of the computational resources
were consumed in calculating the buoyant force.

For spherical and rectangular bodies, depth-peeling
was applied twice to compute the submerged volume
of the object geometries. For the teapot and Stanford

3권 332

8 Jinwook Kim et al.

bunny bodies, depth-peeling was applied a maximum of
6 times, but in most cases 3 or 4 peels sufficed to cover
the submerged volume. The framebuffer resolution used
in this example was 32×32, allowing at most 5% approx-
imation error. The leftmost images in Figure 10 show the
gravity force (downward blue arrow) and buoyant force
(upward yellow arrow) acting on a bunny, a torus, and
a teapot. The remaining images are color buffers that
encode the integrands for each peel, as described in the
previous section. Since the framebuffers use a floating
point texture format that cannot be illustrated properly,
we have transformed the values so that they map to a
color range of [0,1].

Fig. 10 Color encoded integrands of each peel for the buoy-
ant bunny, torus, and teapot (left).

6 Conclusion

We have proposed a GPU-friendly algorithm for com-
puting the mass properties of a rigid body represented
by a general geometry. We formulated the mass prop-
erties as surface integrals on a projected plane, avoid-
ing singularities at the boundaries. We also showed that
depth-peeling techniques can be exploited to tackle non-
convex geometries. Our approach is essentially image-
based. Consequently, it can efficiently compute mass prop-
erties as long as the geometries can be rendered using
graphics hardware.

We applied our algorithm to simulate rigid body mo-
tion in a real-time hydrostatic buoyancy simulation. The
mass properties of the submerged volume were efficiently
computed without an explicit reconstruction of the in-
tersecting geometry between the fluid and the rigid bod-
ies. Our algorithm approximates mass properties fairly
accurately, even using low resolution framebuffers. Our
interactive simulation demonstrates that the proposed
algorithm can be applied to animate floating rigid bod-

ies on a stationary fluid system in a fast and plausible
way.

Acknowledgements The material presented herein is based
upon work supported by the Information and Telecommuni-
cation National Scholarship Program supervised by IITA and
the Ministry of Information and Communication, Republic of
Korea.

References

1. Bolz, J., Farmer, I., Grinspun, E., Schröoder, P.: Sparse
matrix solvers on the GPU: conjugate gradients and
multigrid. ACM Trans. Graph. 22(3), 917–924 (2003)

2. Buck, I., Purcell, T.: GPU Gems 2, chap. A toolkit for
computation on GPUs. Addison-Wesley (2004)

3. Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: Animat-
ing the interplay between rigid bodies and fluid. ACM
Transactions on Graphics 23(3), 377–384 (2004)

4. Everitt, C.: Interactive order-independent transparency
(2001). URL citeseer.ist.psu.edu/everitt01interactive.html

5. Foster, N., Metaxas, D.: Realistic animation of liquids.
Graphical Models and Image Processing 58(5), 471–483
(1996)

6. Gonzalez-Ochoa, C., McCammon, S., Peters, J.: Comput-
ing moments of objects enclosed by piecewise polynomial
surfaces. ACM Transactions on Graphics 17, 143–157
(1998)

7. Hillesland, K.E., Molinov, S., Grzeszczuk, R.: Nonlin-
ear optimization framework for image-based modeling on
programmable graphics hardware. ACM Transactions on
Graphics 22(3), 925–934 (2003)

8. Krüger, J., Westermann, R.: Acceleration techniques for
GPU-based volume rendering. In: VIS ’03: Proceedings of
the 14th IEEE Visualization 2003 (VIS’03), p. 38. IEEE
Computer Society, Washington, DC, USA (2003)

9. Krüger, J., Westermann, R.: Linear algebra operators
for GPU implementation of numerical algorithms. ACM
Transactions on Graphics (TOG) 22(3), 908–916 (2003)

10. Layton, A.T., van de Panne, M.: A numerically efficient
and stable algorithm for animating water waves. The
Visual Computer 18(1), 41–53 (2002)

11. Lee, Y.T., Requicha, A.A.: Algorithms for computing the
volume and other integral properties of solids. I. Known
methods and open issues. Communications of the ACM
25(9), 635–641 (1982)

12. Mammen, A.: Transparency and antialiasing algorithms
implemented with the virtual pixel maps technique.
IEEE Computer Graphics and Applications 9(4), 43–55
(1989)

13. Mirtich, B.: Fast and accurate computation of polyhedral
mass properties. Journal of Graphics Tools 1(2), 31–50
(1996)

14. Moreland, K., Angel, E.: The FFT on a GPU. In: HWWS
’03: Proceedings of the ACM SIGGRAPH/Eurographics
Conference on Graphics Hardware, pp. 112–119. Euro-
graphics Association, Aire-la-Ville, Switzerland (2003)

15. Rost, R.J.: OpenGL Shading Language. Addison-Wesley
Longman, Redwood City, CA (2004)

16. Thompson, C.J., Hahn, S., Oskin, M.: Using modern
graphics architectures for general purpose computing:
A framework and analysis. In: Proceedings of the
ACM/IEEE International Symposium on Microarchitec-
ture, pp. 306–317 (2002)

17. Wu, E., Liu, Y., Liu, X.: An improved study of real-
time fluid simulation on GPU. Computer Animation and
Virtual Worlds 15(3–4), 139–146 (2004)

3권 333

