Temperature dependence of energy band gap for ZnO thin films

  • Published : 2007.06.21

Abstract

ZnO films on $Al_2O_3$ substrates were grown using a pulsed laser deposition method. Through photoluminescence (PL) and X-ray diffraction (XRD) measurements, the optimum growth conditions for the ZnO growth were established. The results of the XRD measurements indicate that ZnO films were strongly oriented to the c-axis of the hexagonal structure and epitaxially crystallized under constraints created by the substrate. The full width half maximum for a theta curve of the (0002) peak was $0.201^{\circ}$. Also, from the PL measurements, the grown ZnO films were observed to give free exciton behaviour, which indicates a high quality of the epilayer. The Hall mobility and carrier density of the ZnO films at 293 K were estimated to be $299\;cm^2/V\;s$ and $8.27\;{\times}\;10^{16}\;cm^{-3}$, respectively. The absorption spectra revealed that the temperature dependance of the optical band gap on the ZnO films was $E_g(T)\;=\;3.439\;eV\;-\;(5.30\;{\times}\;10^{-4}\;ev/K)T^2(367\;+\;T)$.

Keywords