[PLO7] Titan's Molecules and Haze Investigated with Optical and Near-IR Spectra H. Seo¹, S.J. Kim¹, C. Sim¹, J. Kim¹, A. Jung¹, T. Geballe², R. Courtin³, and L. Brown⁴ ¹Kyung Hee University ²Gemini Observatory ³Observatoire de Paris, Meudon ⁴Jet Propulsion Laboratory We have obtained optical and near-IR spectra using an optical echelle spectrograph (BOES) on the 1.8-m telescope at Bohyunsan Observatory, and using NIRSPEC at Keck II, respectively. In the 6500 – 9000 A range, CH₄ absorptions dominate the gross spectral features. Between 2.86 and 3.10 microns, strong CH₃D lines have been detected in absorption; and these CH₃D lines are useful to investigate stratospheric and tropospheric haze opacities in this wavelength range. We constructed synthetic spectra for the visible and infrared ranges including CH₄ and CH₃D lines, and haze layers. Preliminary results on the derived opacities of the haze layers in the visible and infrared ranges will be presented.