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The characteristic propagation of an electromagnetic (EM) wave inside a photonic bandgap (PBG)
structure is determined by the energy-momentum dispersion relation. For example, the electric
field-enhancement at PBG edges is understood in terms of low group velocity and dispersion
anomaly of propagating EM wave. While an analytic expression of dispersion relation, providing a
Bloch index, is readily available for an infinite period structure of PBG, a dispersion relation is
numerically obtained from the measured transmission coefficient in case of a finite period PBG
structure. In practice, the numerical dispersion relation (NDR) is very useful in tailoring PBG
structures when we are interested in efficient nonlinear optical (NLO) harmonic generations in a
PBG structure, since NDR allows us to find the spectral locations of fundamental and harmonics
near bandgap edges to achieve a phase matching.(1) In fact, Galisteo-López et al. compared the
dispersion relation measured by a white light interferometry and the calculated NDR of a
three-dimensional PBG structure, and found that the agreement was remarkable.(2) The NDR
analysis is further extended to obtain an explicit relation between the real and the imaginary
components of an EM wave emerging from a PBG structure by use of a Kramers-Krönig relation.(3)

While all-optical switching at bandgap edges (4),(5) and defect mode, (6),(7) originating from optical
Kerr related nonlinearity, has been demonstrated experimentally in a PBG structure, NLO analysis
of the beam propagating properties based on the NDR was not pursued, mainly due to the difficulty
in obtaining an analytical dispersion relation. In this paper, we utilize the NDR to investigate the
optical Kerr changes in two 1-D finite period photonic bandgap structures, namely, a Bragg reflector
(BR) and a photonic crystal microcavity (PCMC). The BR is a 1-D finite period photonic bandgap
structure without a defect layer, and the PCMC is in a structure of two identical BRs sandwiched
symmetrically with a defect layer-between, hence exhibiting an optical defect mode. We report three
important findings. First, the singularity predicted to occur at bandgap edges of a BR by a Bloch
index is removed. Second, the optical properties, based on the dispersions of linear and nonlinear
refractive indices, of a defect mode and bandgap edges in a PCMC are properly described. In
particular, optical Kerr nonlinearity is found to be more enhanced at defect mode than at bandgap
edges, which is understood when the density of modes and the EM field localization are taken care
of in describing a third order nonlinear optical process in a periodic structure. Third, the NLO
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transmission property associated with the optical Kerr nonlinearity is investigated and compared for
the bandgap edge of a BR and the defect mode of a PCMC. The NLO refractive index change
required to achieve for a transmission change from 100 % to 10 % is numerically simulated.(Fig.1)

Fig.1 Numerically simulated transmission spectra of (a) a finite BR
(solid curve) & an infinite BR (dashed curve), and (b) a finite
PCMC. Numerically simulated transmission changes at the
low-energy bandgap edge of the BR (dashed curve) & the defect
mode of the PCMC (solid curve). As a reference, that of the
infinite BR is shown as the dotted curve.
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