Energy transfer from trapped to untrapped Er³⁺ ions in Calcium Niobium Gallium Garnet Crystal doped with trivalent erbium ions investigated by time-resolved laser excitation spectroscopy

Eun Sik Kim¹, Kyoung Hyuk Jang¹, Kyung Hyang Kim¹, Hyo Jin Seo^{1*}, Taiju Tsuboi², Kiyoshi Shimamura³

¹ Department of Physics, Pukyong National University, Busan 608-737, Republic of Korea

²Faculty of Engineering, Kyoto Sangyo University, Japan

³Optronic Materials Center, National Institute for Materials Science, Tsukuba 305-0044, Japan

Fax: +82-(51)-611-6357 E-mail address: hjseo@pknu.ac.kr

Luminescence properties of Er^{3^+} ions doped in Calcium Niobium Gallium Garnet $(Ca_3(NbGa)_{2-x}Ga_3O_{12}\ CNGG)$ crystal are investigated by laser excitation spectroscopy. Time resolved emission spectra of Er^{3^+} in CNGG are obtained together with the luminescence decays under the 355 and 532 nm pulsed laser excitations which excite the Er^{3^+} ions from the $^4I_{15/2}$ state to the $^4G_{9/2}$ and $^2H_{11/2}$ states at room temperature. Emission bands are observed in the wavelength region 390–450, 510–580, 600–720, and 820–880 nm corresponding to the transitions from the $^2G_{9/2}$, $^2H_{11/2}$, $^4S_{3/2}$, $^4F_{9/2}$, and $^4I_{9/2}$ states to the $^4I_{15/2}$ state, respectively. Under excitation at 355 nm, unlike at 532 nm, the emission band shows two types of spectral features and temporal behaviours. We attribute Er^{3^+} emission with the fast decay to the trapped Er^{3^+} ions associated with oxygen-vacancy centre of other defect centres. We also observed the energy transfer occurs from the trapped Er^{3^+} ions to the untrapped Er^{3^+} ions under excitation at 355 nm.