Proceedings of the Korean Institute of Information and Commucation Sciences Conference (한국정보통신학회:학술대회논문집)
- 2007.06a
- /
- Pages.605-608
- /
- 2007
Image Denosing Based on Wavelet Packet with Absolute Average Threshold
절대평균임계값을 적용한 웨이블릿 패킷 기반의 영상 노이즈 제거
- Ryu, Kwang-Ryol (Mokwon University) ;
- Sclabassi, Robert J. (University of Pittsburgh Medical Center)
- Published : 2007.06.01
Abstract
The denoising for image restoration based on the Wavelet Packet with absolute average threshold is presented. The Existing method is used standard deviation estimated results in increasing the noise and threshold, and damaging an image quality. In addition that is decreased image restoration PSNR by using the same threshold in spite of changing image because of installing a threshold in proportion of noise size. In contrast, the absolute average threshold with wavelet packet is adapted by changing image to set up threshold by statistic quantity of resolved image and is avoided an extreme impart. The results on the experiment has improved 10% and 5% over than the denoising based on simple wavelet transform and wavelet packet respectively.
본 논문은 절대평균 임계값을 웨이블릿 패킷에 적용하여 영상의 노이즈를 제거하기 위한 연구이다. 기존에 사용된 임계값은 표준편차 추정치를 사용하므로 노이즈 크기가 커지면 임계값이 증가하고 영상도 손상된다. 또한 노이즈 크기에 비례하여 임계값이 설정되므로 영상이 변해도 동일한 임계값이 적용되어 복원영상의 PSNR이 저하된다. 반면 절대평균의 임계값을 적용기법은 극단적인 영향을 피할 수 있고 분해된 영상의 통계량에 따라 임계값이 결정되므로 영상의 변화에 적응적이다. 실험 결과 표준편차 추정 임계값을 적용한 웨이블릿 변환기법과 비교하여 12%, 웨이블릿 패킷 기반 노이즈 제거기법과는 6% PSNR이 증가하였다.