BLR(Board Level Reliability) study for CuOSP solder joint in fine pitch BGA

김 동 식 대리 (스태츠칩팩코리아)

BLR (Board Level Reliability) study for OSP solder joint in fine pitch BGA

STATS ChipPAC NE R&D Center

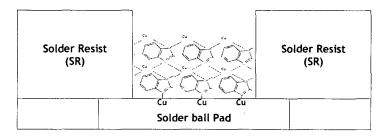
Kim Dong Sik

BLR study for OSP solder joint in fine pitch BGA

• Substrate Pad finish

Interconnection Area	Pad finish	Plating method	Applied Product
		E-less (ENIG)	SIP
Wire bonding pad	Ni/Au	E-lytic	All wire bonding product
	1	E-less (ENIG)	-
Solder ball pad	Ni/Au	E-lytic	Almost W/B Product
	OSP	Wet coating	Partial W/B Product

• OSP Materials

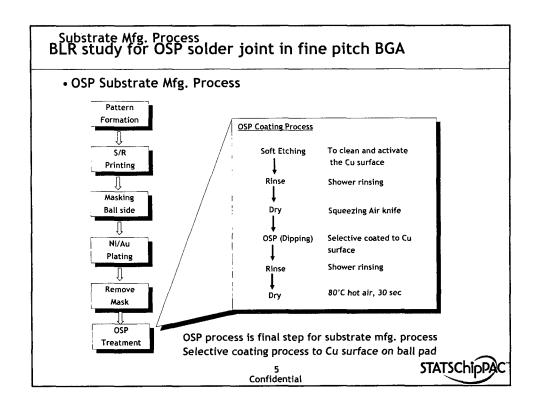

OSP Material	F type	W type	
Base ingredient	Phenyl imidazole	Alkyl benzimidazole	
Recommend Thickness	0.15 ~ 0.35um	0.20 ~ 0.50um	
Base radical	Phenyl- amine group	Amine group	
Bonding Formation	Cu Pad Cu Cu Su	Cu Pad Cu	

3 Confidential

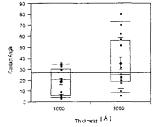
BLR study for OSP solder joint in fine pitch BGA

• OSP Coating

>Bonding between unpaired electron of nitrogen of Imidazoles and Cu ions


➤ Discoloration : - Loosen between Imidazole group and Cu ion under high temperature

(High Temp. Process - baking, curing, wire bonding, Mold, etc.)


- Rearrangement of Imidazoles and Formation of Cu oxide

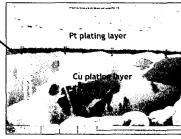
>Remove : Reaction between Flux & Imidazole, and degradation of OSP

4 Confidential STATSChipPAC

- OSP thickness
- > Range of OSP film thickness
 - Suggested thickness: 0.15 ~ 0.5 um
- > Influence of OSP coating thickness on the solderability
 - Too thin of a coating does not provide the appropriate protection of Cu pad from oxidation
 - Too thick of a coating actually makes the removal of the OSP more difficult
- > Effect of OSP layer thickness on wetting angle using SnAg alloy

- Thinner OSP layer (0.1 um) provides better wetting than the thicker layer(0.3 um) using same OSP material and flux having mid activity STATSChipPAC

• OSP Thickness Measurement Methods


> UV Spectrometry

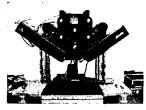
- Most popular method
- Indirect method using dummy board
- Thickness range : 0.15 ~ 0.5um

> FIB (Focused Ion Beam) Photo

- Destruction method using actual product
- To measure the photo image after FIB treatment

OSP coating layer

7 Confidential

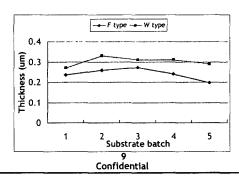

BLR study for OSP solder joint in fine pitch BGA

> Nano-indentation

- Measurement Procedure
 - 1) Recording of load/displacement
- 2) Observe the discontinuity in stiffness of sample
- 3) Estimate OSP thickness at the discontinuity point

> Ellipsometer

- Ellipsometer uses polarized light to determine OSP layer thickness.
- Reflected light coefficients were used to measure OSP layer thickness.


• OSP Layer Thickness data

> UV Spectrometry

- OSP thickness Spec. of each suppliers

Suppliers	OSP Type	Thickness Spec.	Remark
Α	F type	0.15 ~ 0.35um	•
В			
С	W type	0.20 ~ 0.50um	-
D			

- Actual thickness

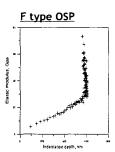
BLR study for OSP solder joint in fine pitch BGA

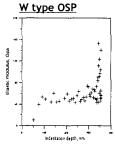
➤ FIB photo

Unit: um

OSP type		F type		W type		
Suppl	Supplier A		В	С	D	
	UV-S	0.235	0.27	0.33	0.31	
OSP :hickness	FIB photo				SON SON	
		0.592	0.253	0.134	0.192	

- The root cause of difference thickness
 - 1. Soft etching variance before OSP coating process
 - 2. FIB photo showed at very small area


> Nano-indentation


- Basic information of Nano-indentation for OSP thickness measurement:
 - OSP thickness was determined by the indentation depth at which the elastic modulus changed suddenly.
- Ranges of OSP thickness measurements for F and W type
 - 1) Thickness of F type

: AVG=0.55 um, STD=0.099 um

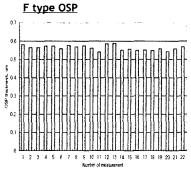
2) Thickness of W type

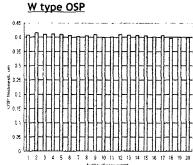
: AVG=0.44 um, STD=0.08 um

* Number of samples = 3 on each OSP coupons

11 Confidential

BLR study for OSP solder joint in fine pitch BGA


> Ellipsometer


- Basic information of Ellipsometer for OSP thickness measurement:
 - Ellipsometry uses polarized light to determine the OSP thickness
- Ranges of OSP thickness measurements for WPF 207 and F2LX
 - 1) Thickness of F type

: AVG= 0.56 um, STD=0.013 um

2) Thickness of W type

: AVG = 0.41 um, STD=0.005 um

12 Confidential STATSChipPAC

> The results of OSP thickness measurement

Unit : um

Measurement Method	F type	W type	Remark
Supplier Recommend	0.15-0.35	0.2-0.5	•
UV-S	0.235	0.27	Indirect method
FIB photo	0.592	0.253	Direct & destruction method
Nano-indentation	0.55	0.44	Direct & destruction method
Ellipsometer	0.56	0.41	Direct method

13 Confidential

BLR study for OSP solder joint in fine pitch BGA

- OSP Discoloration under assembly process
 - > Occurred discoloration by thermal exposure, specially PMC(175'C/5 hrs) process
 - > Discoloration during assembly process
 - Temp & time↑: Discoloration↑
 - ullet OSP discoloration : the thermal behavior of OSP layer (Cu oxide ullet)

Process	Bare Substrate	In-line	Mold	PMC(175'C/5hrs)
F Type				3 2 5 0 3 4 0 5 6 6 6 6
W Туре	••••			

• Assembly process-ability test with F & W type

-. Substrate

: 8×10, 44LD, 0.5 pitch

-. OSP

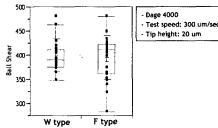
: F & W type

-. Flux

: Water soluble & High activation type

-. Solder Ball

: Sn1.205Ni, 0.3mm dia.


-. Process flow

: Bake \rightarrow Mold \rightarrow PMC(175'C, 5 hrs) \rightarrow SBM \rightarrow Quality Check

-. Check Items

: Visual inspection after BST, ZST

-. BST results

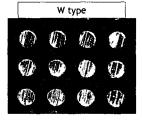
/sec

- * All of the fracture modes are "Ductile Mode"
- * However, F type has a large standard deviation value and an abnormal small ball shear value.

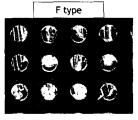
15 Confidential

BLR study for OSP solder joint in fine pitch BGA

> Zone Shear Test


000 4	Conform	ning Part	N	Non-Conforming Part		TOTAL	Remark
OSP type	Bulk solder	Void < 20%	Void > 20%	IMC > 25%	Any exposed Cu	IOIAL	Remark
F type	440	0	0	0	0	440 (10 unit)	Pass
W type	440	0	0	0	254	440 (10 unit)	Fail

-. W type meets ZST criteria in SCK , but F type is not good


Note) 1. Measuring equipment → Dage 4000HS

2. Shear speed: 5mm/sec

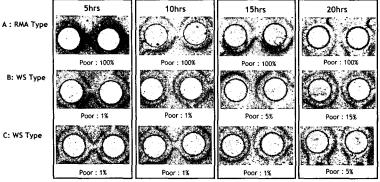
3. Shear height: 20um

* All of the fracture modes are "Ductile Mode"

- * 34 of 44 balls are "Non-wetting"
- * The rests are "Ductile Mode"

16 Confidential

16


• Oxide layer removal performance

-. OSP Type

: W Type

-. Evaluation procedure

Bare substrate -> Thermal aging(175'C, 5hrs) -> Flux apply -> Lead free reflow -> Deflux -> Visual inspection

Poor %: Oxide remain rate on ball pad

"C" flux showed the best performance to remove OSP layer & oxide

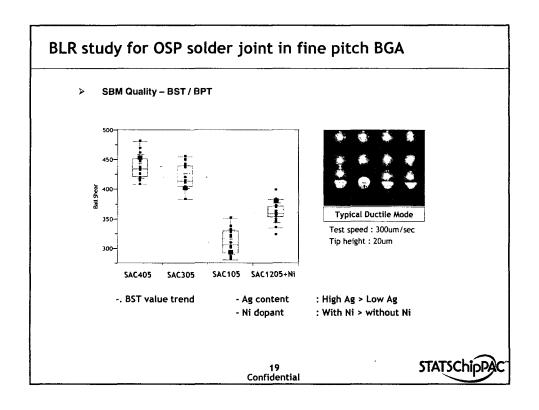
17 Confidential

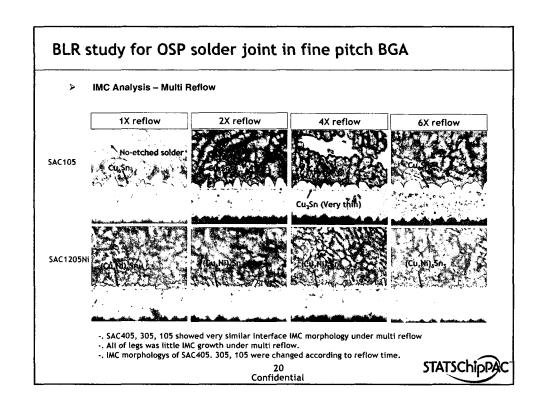
BLR study for OSP solder joint in fine pitch BGA

• Solder ball Alloy Evaluation

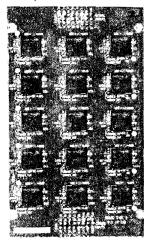
-. Purpose : To select best solder ball alloy for CuOSP finish

-. Package : TFBGA, 341L, 0.5pitch


-. Substrate : W type OSP

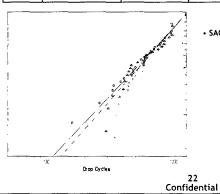

-. Solder ball : Different Ag content & Ni dopant alloy, 0.3mm ball

-. Evaluation Matrix


Solder ball alloy	Description	Remarks
SAC405	Different Ag content	Ag content effect
SAC305		
SAC105		
SAC1205Ni	Reduce Ag + Ni dopant alloy	Dopant effect
	SAC405 SAC305 SAC105	SAC405 Different Ag content SAC305 SAC105

- Drop Test
 - Drop Test Board

- Test Condition
 - JESD22-B104-B Condition B
 - Impact 1500G +/- 20%,
- Duration 0.5ms+/-30%
- Samples size
- 4 boards/15 units = 60 units/leg
- # of Drops
- 1000 drops
- Package pad design : SMD
- Drop board design : NSMD


21 Confidential

BLR study for OSP solder joint in fine pitch BGA

Drop Test Result

	Solder Ball Alloy		SD22-8111)		
Leg#		30 drops #of fail	250 drops #of fail	1000 drops #of fail	1st fail # of drops
1	SAC405	0/60	0/60	22/60	294
2	SAC305	0/60	0/60	32/60	212
3	SAC105	0/60	2/60	29/60	160
4	SAC1205+0.05Ni	0/60	0/60	30/60	342

SAC1205Ni showed good drop performance

STATSChipPAC

> Conclusion

- -. It seems that UV-S is not good method to measure actual OSP thickness. Ellipsometer is good because it is non-destructive α easy measurable method using actual substrate.
- -. The discoloration of OSP substrate occurs by thermal exposure during assembly process, especially after post mold cure, and high activating flux is needed to remove OSP later of thermal attacked substrate to attach solder ball on the pad.

-. BST value trend

- Ag content

: High Ag > Low Ag

- Ni dopant

: With Ni > without Ni

-. Multi Reflow

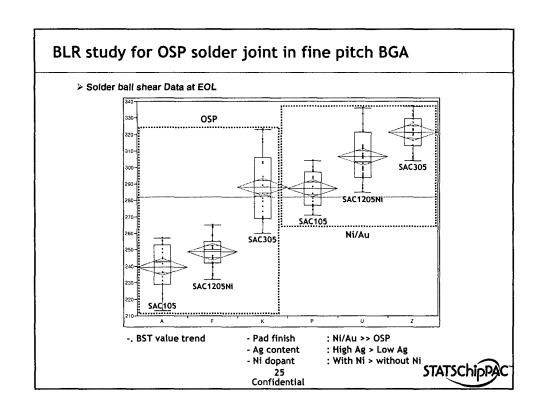
- SAC405, 305, 105 showed very similar interface IMC morphology
- All of legs was little IMC growth.
- IMC morphology of SAC405. 305, 105 were changed from small swelling to large, but Ni dopant alloy was not remarkable.
- -. Low Ag & dopant solder alloy(SAC1205Ni) with OSP showed the best performance in drop test

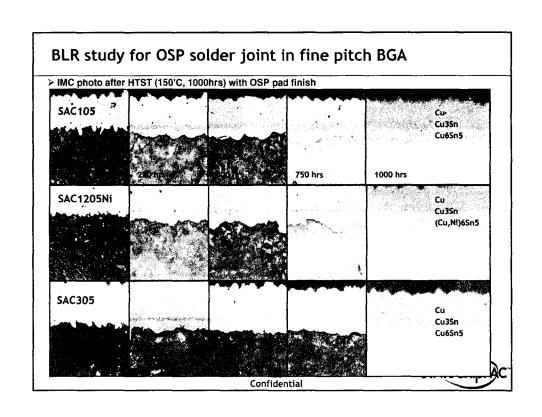
23 Confidential

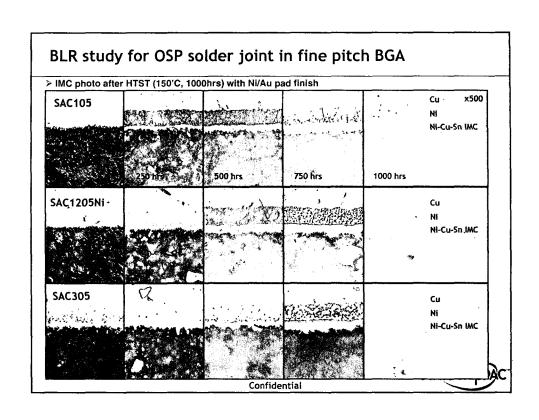
BLR study for OSP solder joint in fine pitch BGA

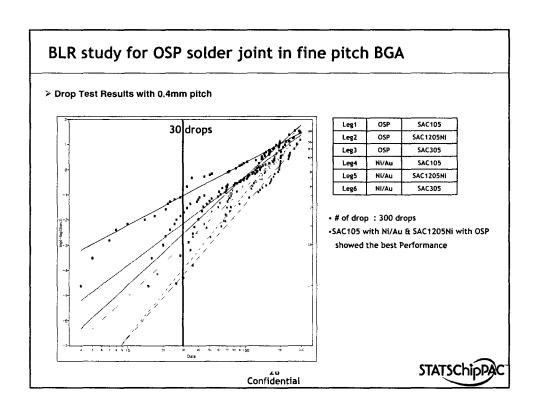
• Solder ball & Pad Finished Evaluation for 0.4 Pitch

> Test Vehicle


Package : VFBGA 0.4mm pitch


Substrate : Ni/Au, OSP
Solder Ball : 0.25mm dia.
SR Opening : 0.23mm


\triangleright _Leg Information


Leg#	Substrate	Solder Ball	Flux
1		SAC105	
2	OSP	SAC1205Ni	
3		SAC305	Water soluble
4		SAC105	High Activation
5	Ni/Au	SAC1205Ni	
6		SAC305	

> Conclusion

- Pad finish : Ni/Au >> OSP 1. BST value trend

- Ag content - Ni dopant : High Ag > Low Ag : With Ni > without Ni

2. IMC after HTST (150°C, 1000hrs)

. The effect of Ag content : No difference of IMC growth . The effect of Ni dopant : the growth of brittle IMC as Cu3Sn on OSP pad

-. With Ni/Au

: No difference of IMC growth regardless alloy composition . The effect of Ag & Ni

3. Drop Test

- OSP with SAC1205Ni & Ni/Au with SAC105 shows good drop performance.