이광자 흡수 광환원 공정을 이용한 정밀 금속 패턴 제작에 대한 연구 Study on precise metallic micro-patterns employing two-photon induced photoreduction process

***손용¹, 임태우¹**, [#]양동열¹, Prem Prabh Akaran², 이광섭² *Y. Son¹, T. W. Lim¹, [#]D. Y. Yang (dyyang@kaist.ac.kr)¹, P. A. Prem², K. S. Lee² ¹ 한국과학기술원 기계항공시스템학부, ² 한남대학교 생명정보신소재공학과

Key words : Two photon absorption, Photoreduction, metallic micro structures

1. 서론

나노/마이크로 디바이스 제작 공정에서 금속 재료는 전 기 회로의 재료로 이용될 뿐만 아니라 나노/마이크로 단위 로 그 형상이 작아짐에 따른 고 굴절률, 고 발광성 및 표 면 플라즈몬 공명(surface plasmon resonance)현상 등의 광학 적인 성질, 자기력 및 이종 금속 물질의 열 팽창률 차이를 이용한 구동 소자 제작 등 그 응용성이 매우 크다. 이에 따라 금속을 이용한 공정으로는 물리적 증착방법 (PVD: Physical Vapor Deposition), 화학적 증착방법 (CVD: Chemical Vapor Deposition), 무전해 도금(Electroless Plating)공정 등이 개발되어 쓰이고 있다.

기존의 공정은 반복적인 패터닝(patterning)과 식각 (etching)을 통한 평면상의 공정을 연속적으로 이용하는 방 법으로 규격화된 제품의 대량 생산에 적합하지만, 의료/바 이오, 디스플레이 등의 다양한 분야에서 고 기능성을 가지 는 복잡한 3 차원 형상을 제작하기에는 효율이 떨어지고 그 공정이 어렵다는 단점이 있다. 이에 따라 나노 스테레 오 리소그래피(nano-streolithography)공정[1]을 이용하여 고분 자 재료로 3 차원 형상을 만든 후 무전해 도금 공정을 이용 하여 금속을 입히거나, 고분자 레진에 금속 파티클을 섞어 3 차원 형상을 제작하는 등의 방법들이 제시 되었다. 하지 만 이러한 방법들은 추가적인 공정을 필요로 하거나 균일 한 3 차원 금속형상을 제작 하지 못하여 금속의 우수한 기 능성을 부여하지 못하였다.

이광자 흡수 광환원 현상(two-photon induced photoreduction)을 이용한 나노 스테레오 리소그래피 공정은 복잡 한 3 차원 금속 마이크로 형상제작에 매우 유리한 공정으로 평가되고 있다. 이 공정은 레이저를 이용한 이광자 흡수 광환원 현상을 이용하여 금속 형상을 제작하는 것이다. 기 존의 이광자 흡수 광환원 현상을 이용한 3 차원 금속 형상 제작 방법으로는 크게 수용액 상태에서 환원 시키는 방법 [2]과 고분자를 이용한 반고상 상태에서 광 환원시키는 두 가지 방법[3]이 이용 되고 있다. 수용액 상태에서 금속을 환원시키는 방법은 환원제의 역할과 열에 대한 안정화 역 할을 하는 물(H₂0)이 이용 된다. 이것은 충분한 전자를 금 속 이온에 제공 함으로써 광환원 현상을 쉽게 일어나게 하 는데 유리한 공정이다. 또한 금속 레진 내에 다른 물질이 포함되지 않아 비교적 순수한 금속만의 형상을 얻을 수 있 다. 하지만 레이저에 의해 가열 된 금속에 의한 열에 대한 안정성을 얻지 못하여 국부적인 기포가 발생하기 쉽다. 이 러한 기포 생성은 균일한 금속 형상 제작에 불리함이 있고. 또한 수용액 상태에서 공정이 진행됨에 따라 금속 이온의 유동이 불규칙하여 국부적으로 광환원 현상이 결핍되기도 한다. 고분자를 이용한 방법은 열용량이 큰 고분자를 이용 하여 금속 이온을 일정하게 배열하고 열을 흡수 함으로써 정밀한 금속 형상 제작에 유리한 공정이다.

본 연구에서는 고분자와 효율적인 이광자 흡수 색소 (two photon absorption dye)를 이용한 반고상 상태의 금속 광 환원 물질을 합성하여 이광자 흡수 광환원 현상을 이용한 정밀한 금속 패턴 제작에 대한 연구를 수행하였다.

2. 이광자 흡수 광환원 현상

광환원 현상이란 외부 에너지를 흡수해서 생긴 들뜬 분자에 의해 금속이온으로 전자의 이동이 쉽게 되어 환원 되는 현상이다. Figure 1 은 금속 이온이 환원 되어 금속이 생성되는 과정을 나타낸 그림이다. 외부 에너지에 의해 환 원된 금속 나노 파티클들은 서로 뭉쳐 금속 형상을 이루기 도 하지만 다른 금속이 환원하기 쉽게 도움 역할을 하는 핵(seeds)의 역할 또한 하게 된다.

Fig. 1 Schematic illustration of reduction process. Reduction Process : electron transfer (ET) from the excited dye to Ag⁺ and charge recombination (CR) from reduced Ag⁺ to the dye. Growth of silver nanoparticles : generation of silver atoms.

이 광환원 과정은 높은 광에너지를 필요로 하는데 이 에너지는 환원된 금속 파티클에 의해 반사되어 국부적으로 열을 발생하여 고분자 매트릭스를 태우게 되어 정밀한 금 속 형상 제작에 어려움이 있다. 또한 이렇게 발생한 열은 빛에 의한 광환원(photo-reduction) 뿐만 아니라 열환원 (thermal-reduction)을 일으켜 금속 이온을 환원 시킨다. 그러 므로 본 연구에서는 열 발생을 최소화 하고 광환원과 열환 원을 같이 고려하여 정밀한 금속 형상 제작을 위한 연구를 수행 하였다.

3. 정밀한 2 차원 금속 패턴 제작 공정 개발

본 연구에서는 이광자 흡수 광환원 현상을 이용한 나노 스테레오 리소그래피 공정으로 2 차원의 정밀한 금속 형상 을 제작하였다. 금속 레진은 기능성 고분자인 PSS(4styrenesulfonique acid)와 질산은(AgNO3)을 이용한 반고상 상 태의 금속 레진을 사용 하였다[4]. 금속 레진에서 고분자 매트릭스는 음이온을 가지며 은염은 양이온을 가지므로 서 로 이온 결합을 하여 안정적으로 배열하게 된다. 금속 레 진의 광환원 현상을 위해 사용된 레이저는 80fs의 펄스 폭 을 갖는 티타늄-사파이어 레이저(Ti-Sapphire femtosecond laser)이며, 파장은 780 nm, 작동 주파수는 80 MHz이었다. 금속 이온의 농도는 0.3M AgNO3, 기능성 고분자로는 PSS(4-styrenesulfonique acid) 18wt. % in H₂0 를 사용 하였다. 우선 레이저의 출력이 크고 조사시간이 길게 되어 레이저 조사량이 커지면 환원된 금속 파티클에 의해 반사되는 빛 의 양이 많아져 국부적인 열 증가를 가져온다. 이러한 국 부적인 열 증가는 환원된 금속 파티클들의 응집 과정에서 원래의 형상을 만들지 못하고 레이저 초점 중심으로부터

밀려나게 되어 더블 라인을 형성 한다. Figure 2 는 높은 레 이저 출력에 따른 국부적인 열 증가로 더블 라인을 형성하 는 과정을 나타낸 그림이다.

Fig. 2 Schematic illustration of the formation procedure of the double lines. Metal particles were pushed out by thermal effects due to light absorption.

Figure 3 은 레이저 출력 120mw 에서 이광자 흡수 광환 원 현상을 이용하여 제작된 이중 라인 패턴이다. 이 현상 은 120mw 의 레이저 출력이 이광자 흡수 광환원 현상을 일으키기도 하지만 생성된 금속 파티클을 가열시켜 국부적 인 열 발생으로 인한 형상 왜곡을 야기시킨다.

Fig. 3 SEM image of silver double lines fabricated by two-photoninduced metal-ion reduction at 120mW, 1ms.

Fig. 4 SEM image of silver single lines fabricated by two-photoninduced metal-ion reduction at 120mW, 1ms with twophoton dye mixed metallic resin..

그러므로 본 연구에서는 이광자 흡수 색소(two-photon absorption dye)를 이용하여 이광자 흡수 광환원 현상의 효 율을 높여 상대적으로 같은 레이저 출력을 사용하여도 금 속에의해 반사하는 빛의 양을 줄여 국부적인 열 증가를 억 제하여 열 영향에 의한 형상 왜곡을 최소화 하였다. Figure 4 는 이광자 흡수 색소를 첨가하여 이광자 흡수 광환원 현 상의 효율을 높여 같은 레이저 출력 120mw 에서도 열영향 을 줄여 왜곡이 없는 단일 라인형상을 제작한 모습이다. 그러므로 이광자 흡수 색소를 이용하여 효율을 높인 이광 자 흡수 광환원 현상을 이용한 나노 스테레오 리소그래피 공정이 정밀한 금속 형상 제작에 유리한 공정임을 보여주 고 있다. 본 공정에서 사용한 금속 레진은 고분자 물질인 PSS 를 포함하기 때문에 금속 원소뿐만 아니라 고분자에 의한 다 른 원소도 포함 되어 있으리라 판단하였다. 제작된 형상의 성분 분석을 위하여 원소에 따른 X-ray 방출량을 검출하여 분석하는 EDS (Energy dispersive X-ray spectroscopy)장치를 이 용하였다. Figure 5 는 커버 글라스와 이 위에 제작된 금속 형상에 대한 원소 분석 스펙트럼 그림이다. 두 스펙트럼을 비교하여 S, Ag 원소들의 함유량이 다름을 확인하여 금속 형상의 구성 원소는 S, Ag 임을 확인할 수 있다. 이는 제작 된 형상의 약 70% 가 금속인 Ag 로 구성되어 있음을 확인 할 수 있었고, 금속 함유량을 더욱 높이기 위한 연구 또한 진행 중에 있다.

Fig. 5 Energy dispersive X-ray spectroscopy (EDS) of (a) the cover glass and (B) the silvered micro lines.

4. 결론

본 연구에서는 이광자 흡수 광환원 현상을 이용한 3 차원의 정밀한 금속형상을 제작하기 위한 기초연구로서 금 속 패턴 정밀제작에 대한 연구를 수행하였다. 향후 형상 정밀화, 3 차원 형상 제작, 제작된 형상에 대한 특성분석 등 에 대한 다각적 연구를 통하여 금속을 이용한 고집적, 고 기능성 나노/마이크로 디바이스 제작에 적용 될 것으로 사 료된다.

후기

본 연구는 과학기술부 지원 나노원천기술개발 과제 (M10503000217-05M0300-21700)에 의하여 수행 되었으며 관 계자 분들께 감사 드립니다.

참고문헌

- Yang, D. Y., Park, S. H., Lim, T. W., Kong, H. J., Yi, S. W., Yang, H. K., and Lee, K. S., "Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization," Appl. Phys. Lett., 90, 013113, 2007.
- Ishikawa, A., Tanaka, T., and Kawata, S., "Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye," Appl. Phys. Lett., 89, 113102, 2006.
- Kaneko, K., Sun, H. B., Duan, X. M., and Kawata, S., "Twophoton photoreduction of metallic nanoparticle gratings in a polymer matrix," Appl. Phys. Lett., 83, 7, 1426-1428, 2003.
- Tosaa, N., Bossona, J., Pierrea, M., Rambauda, C., Bouriaua, M., Vitrantb, G., Stéphana, O., Astileanc, S., and Baldeck, P. L., "Optical properties of metallic nanostructures fabricated by two-photon induced photoreduction," Proc. Of SPIE, 6195 619501.