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CHAOTIC MIXING IN SQUARE CAVITY FLOW
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The quality of chaotic mixing in square cavity flow was studied numerically by CFD simulation and
particle tracking technique. The chaotic mixing was generated by using time-periodic electro-osmotic flow.
Finite Volume Method (FVM) was employed to get the stretching and folding field in cavity domain. With
adjusting the initial condition of concentration distribution, the best values of modulation period and Peclet
number which gave us good mixing performance was determined precisely. From Poicarésection and Lyapunov
exponents for characteristic trajectories we find that mixing performance also depends on modulation period.
The higher value of modulation period, the better mixing performance was achieved in this case. Furthermore,
the results for tracking particle trajectories were also compared between using of Bilinear Interpolation and
Higher-order scheme. The values of modulation period for obtaining best mixing effect were matched between

using FVM and particle tracking techniques.

Key Wonds : Chaotic Mixing,Poincaré section, Lyapunov exponent, Bilinear Interpolation.

1. INTRODUCTION

There has been a recently developing surge of
fundamental properties of the mixing due to its application
in manufacturing, food, pharmacology and other industries.

Some researchers are successfully studied on
electro-osmotic flows in the non-uniform zeta-potentials
such as Qian and Bau[13], Ajdari[14], H. Aref[15] and
etc. Understanding of this article can help to crease a
good mixing in cavity flow by switching the various flow
fields which are caused by imposing the non-uniform
zeta-potential surfaces to the walls.

2. PROBLEM FORMULATION AND ANALYTICAL SOLUTION

We have considered the unsteady two-dimensional
motion of an incompressible fluid within a closed square
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cavity where four electrodes are attached to the bottom
and top walls of its as shown in Figure 1. This generates
the relevant electro-osmotic slip velocity at the walls.

The governing equations for this problem are written in
a dimensionless form as follows
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where C is the concentration, Re(=UL/V) is the
Reynolds number and Pe(=UL/D) is the Peclet number. L
is the characteristic length, U is the characteristic velocity,
D is the concentration diffusibility, V is the kinematic
viscosity and t is the dimensionless time.

Pattern A and B corresponds with the flow fields
applied to bottom wall during the first half of the period
and to top wall during the second half of the period,
respectively.

The boundary

conditions for velocity field and
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Fig.1 2-D Geometry of the cavity and the periodic non-uniform
boundary conditions at the top and the bottom walls.
L1 = O.ZL, Lz =(.6L

concentration are:
At the side walls:
- Velocities: No-slip condition u = v = 0

. . LD
- Concentration: zero-gradient condition B—f: 0

At the top and bottom walls:
Velocities: No-slip condition v = 0

- Concentration: zero-gradient condition Z—j= 0

At the bottom wall:
- During first half period 0 <t < 7/2

ub, = —%z for 0<z<02 4
1
ub2=m(l‘—1) for 04<z<1 (5)

where T is modulation period.
- During second half period 7/2<¢t< T

5
ut, =— 3% for 0<z<06 )
0.333
uty :_m(z_l) for 08<z<1 ™

In this case, we used the non-uniform staggered grid

Fig. 2 Schematic for calculation for calculating the Lyapunov
exponent.

system. The governing equations are discretized in time
using finite volume method. The Explicit Euler method is
used for integration of momentum and concentration
equations in time.

Mixing index is defined by the following equation

(13)

¥ Mixing effect using Poincaré section and . Lyapunov
exponent

- Poincarésection is a graphical analysis tool to capture
interesting features such as mixing zones in cavity flow.
Otherwise, it is also a surface in the phase space that
cuts across the flow of a given system. With a 2D
cavity flow, the positions of a point in calculation
domain are advanced by 4th-order Runge-Kutta method.
- Lyapunov  exponent describes’ chaotic mixing by
determining the position of two initially nearby particles
will be extremely different after a certain time.

The best mixing effect will be obtained when Lyapunov
exponent approaches to a maximum value. The largest
Lyapunov coefficient should be positive in the chaotic
state.

3. RESULTS AND DISCUSSION

The FORTRAN code has been developed for the 2D
case which gave us quite good results. The numerical
solutions were obtained for the grid 101x101, which was
selected by grid convergence test and for the fixed
Reynolds number Re = 10. The mixing process is attained
steady state in whole domain of cavity after total time
steps 500,000 for Pe = 2000 and 600,000 for Pe =
10,000. In each case, the results are obtained for the five
values of modulation periods 1,5, 10, 15 and 20.

Mixing performance is obtained- from solving
concentration equatien  correspond . with . various initial
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Fig. 3 Streamlines pattern for the cavity flow at steady state
corresponding to T=1, (a) first half period and (b) second
half period.
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Fig.4 Concentration distribution conditions used in the simulation
C =1 for black and C = 0 for white. (a) VS — horizontal
separation (b) HS — vertical separation (¢) DS - diagonal
separation and {d) SS - square separation

conditions of concentration distribution. The Poincaré
section and Lyapunov exponent are employed to get
mixing index for various boundary conditions of streamline
velocity.

With above boundary conditions, we got the velocity
field which is symmetric for every half period. The
streamlines appear four eddies, two at the bottom wall
during first half period and remaining two at the top wall
during second half period.

31 MpNG Emcr Wit RESPECT TO VARIOUS  INITIAL
CONDITIONS OF CONCENTRATION DISTRIBUTION

The results show that, for the small Peclet number (Pe
= 2000), the change in mixing pattern is negligible with
varying modulation periods (1 to 20) at a specified time
step. However, when we increase the Peclet number (Pe =
10000) the mixing pattern is rather different with respect
to different modulation periods. Especially, with the higher
value of modulation, the more early mixing process is
obtained at a specified Peclet number. Furthermore, we
know that the small Peclet number causes a high
diffusion, so the mixing process quicker for low Peclet
numbers than the higher Peclet numbers.

The best mixing index are collected for every initial
condition at Pe = 2000 and Pe = 10000 (Figures. 5). We
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Fig. 5 Mixing effect with respect to various initial conditions of
concentration distribution at t= 20 (RHS- results for Pe =
2000; LHS- results for Pe = 10000)
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Fig. 5 Variation of Mixing index with respect to dimensionless
time for Pe = 2000.

found that mixing effect is specifically affected by the
initial condition of C-distribution. Among these results, the
best mixing effect is achieved in case of HS (Pe= 2000)
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Fig. 6 Poincaré section with respect to various modulation periods.

and DS in case of Pe = 10000.

For Pe=2000, the mixing is better compared with Pe =
10000. That means at low Pe number, diffusion is more,
so many thin layers will be observed in flow pattern.

3.2 RESULTS FOR POINCARE SECTION AND LYAPUNOV-EXPONENT

We will capture the particle’s trajectory by calculating
the equation of positions. The 1025 started points are
distributed uniformly in cavity domain.

We can see the mixing effect is better gradually when
we increase the modulation period. At the smallest
modulation- period, the trajectories of the particle is clear
as streamlines in chaotic and regular domains. But when
modulation period increases the particles are distributed
uniformly in whole domain of cavity. Therefore, we can
get best mixing effect when we input the enough high
value of modulation period. The deformation of blob is
also considered with respect to various values of
modulation periods. After two periods, the square blob has
already turned into thin line. When the modulation period
is relatively small, the blob stretches, deforms and
elongates slowly. At T = 2, all particles just wandered
around the small fixed zone after 20 periods.The blob is
deformed fully and the fluid particles spread to cover
almost the entire cavity domain with respect to T= 20.

Furthermore, when we impose zeta-potential surfaces to
another wall which means we change boundary condition
at the walls of cavity; we also get the rather different
mixing effects.

Appropriate to different flow patterns (shown .in Fig. 7),
we computed the Lyapunov-exponent for various time
periods.
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Fig. 7 The deformation of a material of edge size 0.1 initially
(t=0) centered at (0.45, 0.45).
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Fig. 14 Lyapunov exponent at various modulation periods. -

4. Conclusion

The primary -aim of the present work paper was to
develop the numerical code of finite element method for
solving the chaotic mixing properties of flows generated
by solid walls undergoing alternating boundary conditions
periodically in every period at the top and bottom walls
in a two dimensional cavity. The chaotic mixing is
enough good depend on the modulation of the chosen
period for imposing of the boundary conditions at the
solid wall of cavity and the Pelec number.

The fairly good results of .chaotic mixing in this case
are to demonstrate FVM is also an advantageous method
for simulation of mixing problems. The Poincaré section
and Lyapunov exponent are also the good methods to
obtain the mixing performance in this case.
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