햅틱 볼륨 렌더링을 위한 효과적인 역행렬 계산법

Effective Inverse Matrix Transformation Method for Haptic Volume Rendering

  • 발행 : 2007.11.16

초록

Realistic deformation of computer simulated anatomical structures is computationally intensive. As a result, simple methodologies not based in continuum mechanics have been employed for achieving real time deformation of virtual reality. Since the graphical interpolations and simple spring models commonly used in these simulations are not based on the biomechanical properties of tissue structures, these "quick and dirty"methods typically do not accurately represent the complex deformations and force-feedback interactions that can take place during surgery. Finite Element(FE) analysis is widely regarded as the most appropriate alternative to these methods. However, because of the highly computational nature of the FE method, its direct application to real time force feedback and visualization of tissue deformation has not been practical for most simulations. If the mathematics are optimized through pre-processing to yield only the information essential to the simulation task run-time computation requirements can be drastically reduced. To apply the FEM, We examined a various in verse matrix method and a deformed material model is produced and then the graphic deformation with this model is able to force. As our simulation program is reduced by the real-time calculation and simplification because the purpose of this system is to transact in the real time.

키워드