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Abstract - Anew discretization method for the input-driven nonlinear continuous-time system with time delay is
proposed. It is based on the combination of Taylor series expansion and first-order hold assumption. The mathematical
structure of the new discretization scheme is explored. The performance of the proposed discretization procedure is
evaluated by case studies. The results demonstrate that the proposed discretization scheme can assure the system
requirements even though under a large sampling period. A comparison between first order hold and zero-order hold is

simulated also.
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1. Introduction
In many physical, industrial and engineering systems,

delays occur due to the finite capabilities of information

processing and data transmission among various parts of
the system. Typical examples of time-delay systems are
communication networks, chemical processes, teleoperation
systems, biosystems, underwater vehicles and so on. The
presence of delays makes system analysis and control
much more complicated [1][2]. Thus, new control system
design methods that can solve a system with time delays
are necessary [3][4].

The proposed discretization scheme is based on the
Taylor-Lie series and uses a similar mathematical
framework [prev1ousl¥v1 developed for delay-free nonlinear
systems [5][6]7][8]. Many traditional approaches require a
“small” time step in order to be deemed accurate, and this
may not be the case in control applications where large
sampling periods are_inevitably introduced due to physical
and technical limitations. In these large sampling period
systems, Taylor series method was used to improved the
performance of the controller [9]. However, in the previous
paper zero-order hold (ZOH) assumption was used in the
discretization method. The performance of ZOH assumption
is seriously depended on the input signal and the samplin,
time should be short enough for a certain contro
precision.

. A high-order method is a method that provides extra

digits of accuracy with only a modest increase in
computational cost [10)[11]. Except the square wave and
unit step input signals, ZOH assumption will no longer
keep e good cg)e ormance = of = control. Therefore,
first-order hold (FOH) assumption is introduced in this
paper to enhance the performance.

The paper is_organized as follows,Section 2 contains
some mathematical preliminaries, Sec. 3 shows the
groposed method, Section 4 case studies is given, and Sec.
A 1()irov1des a few concluding remarks drawn from this
study.
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2. First Order Hold for Input-Delay System

In the present study single-input  nonlinear
continuous-time control systems are considered with a .
state—~space representation of the form:

dx(t) _ _
ar = f(x() + g(x(1))u(t - D) )

where x€ X< R" is the vector of the states and an

open and connected set, #<€Rjs the input variable and D is
the system’s constant time-delay (dead-time) that directly
affects the input. It is assumed that S, &) are real
analytic vector fields on X .

An equidistant grid on the time axis with mesh
T=4.-4>04g considered, where li>tial=[kT.(k+DT)ig the
sampling interval, Tis the sampling period. It is also

assumed that system (1) is driven by an input that is
piecewise linear over the sampling interval, ie. the
first-order hold (FOH) assumption holds true.

For FOH, whileD=0and kT <t<kT+T

() = u(kT)+W(l— KT)
= u(k)+—-———”(k)_;(k—]) (¢~ kT) 2)
Furthermore, let,
D=gT+y (3)
where 9 € {0,1,2,..} and 0<y<T  Equivalently, the

time-delay Dis customarily represented as an integer
multiple of the sampling period plus a fractional part of T
[5][6]. Under the FOH assumption and the above notation,
it 1s rather straightforward to verify that the
"delayed”input variable attains the following values with

expressions within the sampling interval, while D#0,
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Introducing functions *{) and*:() | we get a compact

expression, as follows,

wi-pyo] WO HElKTKTH)
‘ 1) telKT4p KT+T)
(4)
wheré,
ul{ty=ulk-q-1)
wk-q-H-uk-qg-2)
+ 7 [t~ kT +(T - )] (5)

w, (1) = ulk - q)
@)k - ~1
b gm0y yy gy ®)

3. Taylor Series Based Discretization Method

It is now feasible to extend the aforementioned Taylor
discretization method to nonlinear continuous-time systems
with a constant time-delay (2#90) in the input.

3.1 Linear Control Systems With Time-Delay

In order to motivate the development of the proposed
discretization procedure and draw the appropriate analogies
from the field of linear systems, let us first begin the
exposition of the paper's main results by briefly reviewing
the ones available in the case of linear systems [12, 13],

dr(f)

= Ax{t) + bult ~ D) e

where A, b are constant matrices of appropriate
dimensions. Ii is know that for any time interval] =[ti"'f’),

the following formula holds true,

A o fr ¥ -
x(t,y=e"" "'.\’(f,)'*frle'w’ ”bu(r)dr

(8)
As shown in (4), under FOH assumption, the input
variable expressions are different within the two

subintervals [47-k7 +¥) and [KT +7.kT +T) Syccessively
applying formula (8), we readily obtain,

oy ATy,
x(kT +y)=e “',\(kT)+LT e Py (r)ydr ’ . )
and
(AT + Ty =e" " I x(kT + y)
+ j:::: " Oy ()T

In light of equation (9 and
XKT+T)=e™" e x(kT)+ f " Oy, (n)dr
+y

(10)

10y yields,

- iT+y Ter—
™Y L T Oy (Ddr

=" x(kT)+ [ T b, (KT + 7+ )

+ j]ife“”""*"bl:,({}(—1)T+7+r)dr an

Notice, that the value of the state vector at (k+1)T is
defined the states evaluated at kT and the two
subinterval expressions, which can be obtained by the
time-delay I? and equation (4).

.-3.2 Nonlinear Control Systems With Time-Delay

Motivated by the linear approach described in section
3.1, a similar line of thinking 1s adopted for the nonlinear
case as well. Indeed, by applying the Taylor series
discretization method for nonlinear systems presented

before to the [AT.AT+¥) subinterval one . immediately

obtains the state vector evaluated at K7+7

KT +7) = O (x(kT),u,(kT)) 42

where the map® can be derived through a direct
application of formula (13)and the subsequent calculation of

the corresponding Taylor coefficients can be realized
through the recursive formulas (14).
= rt
@ (x(k)u(k)) = x(k}+ .Zl A ’(x(k).u(k))TE— a3)
AV (x,u) i i
where, s#) are determined recursively by,
AN (x,4) = f(x)+ug(x)
Ay = 24 """) L )+ g 1

x(kT) and “&T) gare the instantaneous state vector and

input value respectively at time 47T . Furthermore, it can be
derived from (4) that,

u (kT)=ulk—gq -—1)+R{k g-h T“(k ¢-2) -7 (15)
Similarly,
X(kT+T) =@, (x(kT + y),u, (kT + y)) (16)
and,
(kT +y)=u(k ~q) an

Based on (14), the above equation {12) and (16) can be
rewritten as follows,

x i
KA +5) = (kT + 3 AN KT, 1 (kT))}f-'- 18
L=t H L L¢

kT +T)= r(kT+y)+Z AT + y)u, (kT +y))u : 19)

And furthermore, accordin to (13), the approximate
sampled-data egresentatlom (ASDR) of eguation (18) and
(19) are resulted from a truncation of the Taylor series

. order N, as shown below,

X(kT + ) = O (x(kT),1,(kT))

= x(kT)+ Z AR, 1 (KT E 7

H (20)
AT +T)= O (x(kT + y),u, (kT + )y = x(kT +7)
+ZA“'{x(kT+y) k7 + ) I 2 o0
it should be emphasized, that the functional
representation of the 4" coefficients of the map ®r remains

exactly the same subpart as for the subintervallk7.&T+y)

and it is only need to reuse the same part with the aid of
a symbolic software package such as MAPLE.

the consecutive subintervals, combing equations

For
" (12) and (16), the desired sampled- ~data representation of

the original system (1) is obtained,
(kT + Ty = ®F (x(kT),u, (kT ), 1, (kT +))
= Q)?;? ((Ilr{x(kT),uI (KTH,u, (kT +y)) | 22)

Notice, that a_ finite series truncation order N for the
above series would naturally produce an ASDR,

¢‘;f‘” (x(&T),u, (KT ), u (kT + y}) )
4. Case Studies

xkT+T)= (23)
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Different sampling periods and different input signals
are introducedin the simulation under two different input
signals. The partial derivative terms involved in the
Taylor series expansion are determined recursively by
Maple. At the same time, the Matlab ODE solver is used
to obtain the exact solution. -

A simple chemical pro}:ess system isconsidered which is
exactly the same system in [7][8]. The system can be
described as follow,

L S+ g

(24)

=—(1+2a)x+au—ux—ax’ .
In the simulation,@=1is used. The initial system state is

assumed that X(0)=0

Within the sampling interval, the solution of (24) is
obtained using uniformly convergent Taylor series.
According to the methodology described in earlier sections,
the sampled-data representation of the system is- shown as
(20) and (21).

In this system, J(¥)=-(1+2a)x~ax*.

gx)=(a—-x) (25)

So that, the derivative  terms 4" (x.4) are
determined recursively by (14).
4.1 A Slope Input
The following slopeinput is applied to the system,

u(t—-D)=0.9(t- D)

partial

(26)

We select the truncated order V=3for Taylor seres

method for a sampling7=00land the input time-delay
D=0.005

viet

i
11
[
L

i T i
T pecont.

Fig.1 State response
for slope input

Fig.2 Response error comparison
between FOH and ZOH.

. Fig.l shows that the response curve by Taylor method
is very similar with the curve of Matlab. Fig.2 shows the
errors between Taylor with the Matlab method for both
FOH and ZOH. Furthermore, under the same simulatin,

conditions, the FOH decreases the max error from 0.00122
to 0.00085compared with the method in {9].

4.2 A Sine Input
The following sine-wave input is applied to the system,
u(t=D)=09sin(27(t - D)) . 27)

We select the fruncated order V=3 for Taylor series
method for a sambling T'=00land the input time-delay
D=0.015 '

Fig.3 State responsefor sine input

Fig.2 Response error comparison between FOH and ZOH.

Fig.1 shows that the accuracy of the proposed Taylor
method s _enouc?h. In this fig.2, the FOH combined with
Taylor series decreases the max errors from 0.0042 to
0.0021 compared with ZOH in [9].

5. Conclusions

A first-order hold assumption for Taylor
descretizationmethod is proposed for nonlinear
system with input time-delay.

The performance of the proposed time-discretization
procedure is evaluated using case studies with two
different input signals. In these cases, even when the
samghng time is large with input time-delay, Taylor series
combined with FOH can reach the accuracy requirement of
the systems.

At the same time, the results show that FOH is much
better than ZOH method for the two input signals. Further
comparison for the FOH and ZOH will be the subject of
future publications.
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control
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