Worst-case optimal feedback control policy for a
remote electrical drive system with time—delay

Worst-case optimal feedback control policy for a remote electrical drive system
with time—delay

I, ZA, oA T, ALE
GaoYu ,Zheng Zhang, Chang Goo Lee, Kil To Chong

Abstract - This paper considers an optimal control problem for a remote control to an electrical drive system with a
DC motor. Since it is a linear control system with time-delay subject to unknown but bounded disturbance, we
construct a worst-case feedback control policy. This policy can guarantee that, for all admissible uncertain disturbances,
the real system state should be in a prescribed neighborhood of ‘a desired value, and the cost functional takes the best
guarantee value. '

. The worst-case feedback control policy 1? ?llowed. to be corrected §t one _correction point between_ the initial to the
final time, which is equivalent to solving”a l-level min-max problem. Since the min-max problem at the stage does not
yield a simple analytical solution, we consider an approximate control policy, which is equivalent and can be solved
explicitly in the numerical experiments.
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1. Introduction
DC Motor
. Internal
Optimal control deals with the problem of finding a EN Internet Distributed
control law for a given system such that a certain system
optimality criterion 1s achieved. The optimal control DAQ Interface
problem for linear systems with delays is still open,
depending on_the delay type, specific system equations, Local Sytem
criterion, etc. [1] ,[2].

This paper concentrates on the solution of the optimal
control problem for an Internet-based remote controf) to a . s S .

DC motor. The time-delay is caused by the internet traffic Internet time-delay is an essential issue which must be
and policy construction. And in the drive system model, considered in the design of the Internet-based control
the load torque is uncertain but can be bounded in the System. We assume that the total time-delay of a control
practice. So we use a worst-case optimal control policy to  action per cycle is b and it can be considered as a kind
solve the dynamic system with uncertainties, insteag of o input time-delay.

the classical optimal control method [3]. )
Now, we consider the mathematical model of the DC
motor, which is described by two linear differential

equations:
U=Rit L5+ G L

2. System structure and Model of the DC motor

C = J,-d(—u+/)w+m

Where U is the voltage applied to the rotor circuit, 7 is

the current, w is the rotation speed,mis the resistant

In previous years, the Internet provides great potential
for the hlgh};level control é)f process pla{lx.tsénlt eéil]abled
engineer, who 1s situated 1n eographically verse H ; ircui i
locations, to monitor and adjust. Iglgure.l lustrates the resistance and the inductance of the circuit respectively,
genfral [ 6s]ttructure of the Internet-base remote control J the inertia moment referred to the motor shaft, C, ,
system [6].

torque reduced to the motor shaft, &, and L, are the

C, ., are the constants of the motor and p is the

coefficient of viscous friction.

Add the time-delay of input and above equations can be
written in the form of the state equation

2(8) = Az(t) + bt — h) + qu(t) (2)
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W) = ?;((tt))],u(t)= Ult),wlt) =me), 3)

are the state vector, contro] variable and the disturbance
vector; respectively. The matrices in (2) are

_ —pld. G,/ o =1/
4= [— eir, “minv=lunko= ") @
3.The worst—case optimal control policy
Now we have got the differential equation form
2(t) = Az(t) +bult = h) + quo(t), 5)
2(0) = 2, u(0) = u * ().t E [~ h.0],
rank(b, Ab, ..., A"b) = nrank = (g, Ag,....A"g) =n,
the initial system state =2 (0)and initial control

u,*(1),t€[~h,0] are given, w(t) is an unknown in an

advance disturbance from a bounded set, which will be
defined later.

Follow the closed-loop worst—case - formulation, we
construct the control policy
m={u {» |z ( o))y (o lz ) (0 ))} (6)

at each control interval 7; =[t,.t,]=[0.h], 7, =[t,.t,]. note
that #,=t. —h.
The trajectory z(t) should satisfies terminal condition
Iz(tdmw( o)) =2 ) < & (7
The optimal guarantee value of the cost functional is

[]1‘1Lf(f‘,2[),ll|)( » ))dt+ fhu:::(tl:,,'ul( . ))(It) (8)

'l

J7=min max

7wl

Then, let us define the admissible disturbance

0= {11‘( o) /:'ll11'2(t)rlt < 1.',,/;:.11‘2(1)71t < w} (9)
Considering the (7), for the close-loop worst-case
optimal-feedback control policy, we can see that the
" relationship will became :
rﬁ = 1’*’\mu.\' (Q*) (10)
which is necessary for (6) satisfying (7).
IR e
Q*=/ Flt.,t)g(F(t..t)g) " dt, (11)
h

F(t,7)is the fundamental solution matrix of the system
a(t) = Ax(t)

To simplify the notation,
equality always holds in (10)

E=v,,. (Q) (12)

To derive the worst-case optimal policy, we distinguish
two systems, in first interval t& [tn,tj

we assume that the

The real system subject to a disturbance

2(t) = Az(t) + bu(t—h) + qult). 2(t,) = 2 .t € [to:1,] (13)
The other is nominal system without disturbance
(t) = Az () +bult —h). :l:(f,”) =2z, tE [to,tI] (14)
Lemma 1 The follow relationship happens(which is
proved in [4])
|z, —2, | 2,, <y (15)

Then, apply the two systems in the second interval

te [tl,t*], Based on the information, we may determine

the state T = x(t;)of the nominal system (14) at the

moment ty and T3 = x(t3) at final time:

@, = Fltyt,)z, + / [l“F(ti,,t)lml (t—h)dt, (16)

2y = Fltaty)z, + fll‘F(t*,t)Im(t —h)dt an

According to Cauchy's formula, terminal state real state
23 =2z ts) of real system (5) can be expressed:

23= Fltaty)z,+ //'F(t.,t)bu,(t—h)dﬁ f"F(t.,t)gw(t)dt (18)

£.

. :
=ry+ f Ftut)gw(t)dt
f

If the assumption that equation (12) holds true, the
terminal real system state 2 t ) will satisfy the condition
(7) only that follow equation takes place

.’B3 =T

(19

From [5], the cost functional (8) may be rewritten in
the form

Jl(:"'l ) zm,inmf“x (¢11G¢1 + || 2 _F*(le + G¢l) f 2(:_—:)=

L) 2

(20)

) I’.F(tut)b(F(tl,t)b) 6= [ l‘_* W0

¢, = (x)) =G ‘(x,— Fr,).
st llz—a | 2_, <y
Let ¢] =¢!(z,)be a solution of the problem (20). Then,
the optimal control law
W ()= ¢ () ) F(t, b EE [tg,1, ],
W (the,) = (z, — Fla,) "G Flty bt €t 8,),

The problem (20) is a 1-level min-max problem for the
decision variables ¢, €R",z,€R". In the simulation section,

@1

we consider an approximation of the problem (21), which
is equivalent and easily computed.

4. Simulation and experiment resuit

We consider the DC motor with the following nominal
parameters:

UiniliuI:]'lO VL

[l

=0.16 #, C,=0.58 Vs/rad, C,=0.58 Nin/s, J,

=0.028Nms?/rad,p=001 Nms/rad. The desired angle
speed isw,=50rad/sand desired current is i,=5A, which

[5()]
51

The policies were tested on the set of correction points:
t,=h=007s8, =014s,  t, =02s,t,=1, —h=0.13s.

means that the given final state is! z, =

The corresponding set of admissible disturbance {2is
dcfined through (9) where
he{)l< ot E0.1.1,



v =afhay =’ (b, —h),a=3/4
We % the guarantee value of the cost functional from

(20), which 1s a 1-level min-max problem. Now, we use

an approximation method to (20), which is a convex

mathematical programming problem with only one decision
variable. From [5], the approximate value /="

Disturbances w{ + ) J(;’,w( .))

[0} 153.5349

a/? 149.4615
alcos (1« t/h)l 150.3159
alsin(z « t/h) 150.2916
alcos [(r « t/h)?]| 150.6801
alsin{(z « t/n)]| 149.8328
alcos (x « Vt/h)l 150.0314
alsin(r « v/t /h)l 1506168

Table.1l
Table.l shows. the wvalue of cost functional for

approximate optimal policies applied to the dynamic system
(5) on admissible disturbance. We get the guarantee value

of the cost functional 7°=153.5997. Note that there is no

admissible disturbance withJm%uw(+))> I,

"7 Ta6z ook o006 ooe 01 012 o1e G5 01 02
1

) Figurp.l

Figure.2

Figure.l show the motor speed w and current ¢ on

admissible disturbance w(+)=alos(r « t/h).tE[0.t.]. As the
result, the final nominal state =z(t.)=[50 5]"=lw,%,] (19),
and the final real state z(t.)=[48.1834 5.2330]”. From rule

(12), &=
|| 2 (el o ))—Ix”i

WA, (@) =9.2498, Note that at the final time

=3.3544 <#&. The corresponding optimal

control variable of the input voltage in the interval [(Lg] is

indicated in Figure.2.

5. Conclusion

This paper indicates a possibility to obtain optimal
control policy of an electrical drive system, which has a
constant input time-delay and subject to unknown but
bounded disturbance. The result obtained by numerical
simulation show that the value of cost functional on any
adrmssuble disturbance =~ were guaranteed by the

FrOledte value. And the trajectory of the motor’s angle

ocity w and current 4, at the final real time, was also

in the guarantee neighborhood. The worst-case optimal
Fohcy 1s proved to be a adapt control method for terminal
inear dynamic system with delay subject to unknown, but
bounded disturbance.
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