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Abstract - In this paper, a new approach for a sampled-data representation of nonlinear system that has
time-delayed multi-input is proposed. That is largely devoid of illconditioning and is suitable for any nonlinear problem.
The new scheme is applied to nonlinear systems with two or three inputs; and then the delayed muiti-input general

equation is derived. The method is based on thematrix exponential theory.

Ttdoes not require excessive computational

resources and lends itself to a short and robust piece of software that can be easily inserted into large simulation
packages. A performance of the proposed method is evaluated using a nonlinear system with time-delay: maneuvering an

automobile.
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1. Introduction

First, 1 will introduce some basic knowledge for
Taylor-Lie series algorithm and our algorithm

Then 1 will compare the Taylor-Lie series way and our
way with using time and accuracy.
Initially, delay-free (D = 0) nonlinear control systems

?re considered with a state - space representation of the
orm:

L1,",—:‘];(1%)=f(:l:(t))+!/(fv(t))'u(f) (1)

.~ Under the ZOH assumption and within the sampling
interval, the solution of (1) is expanded in a uniformly
convergent Taylor-series as
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The resulting coefficients can be easily computed by
taking successive partial derivatives of the right-hand side
of equation (1):
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Where x(k) is the value of the state vector x at time t
=ty = kT and A"'(x, u) are determined recursively by

ANz u) = fz)+ugl) (4)
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where | = 1, 2, 3---

_The Taylor series expansion of equation (2) can offer
either an exact sampled-data representation (ESDR) of (1)
by retaining the full infinite series representation of the
state vector

e(k+1) =& (@ (k) ulk) NG
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or an approximate sampled-data representation (ASDR)
of equation (1) resulting from a truncation of the Taylor
series of order N:
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the map =7 denotes the
dependence on the sampling period T of the sampled-data
representation obtained under the above scheme of
discretization, and the superscript denotes__the finite
series truncation order associated with the ASDR of the
equation given above.

Similarly the single input case can be expanded to
multi-input case. The discretization method of general
nonlinear system with multi-input delay is developed using
Taylor series expansion. system with only two
time-delayed inputs will be considered for simplicity in
this  section. time-delayed two-input nonlnear
continuous-time control system can be expressed with the
following state-space form.
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where the subscript of

u, (t—D,)=(D, = q T+,
U, (t— D, )—>(02 =q T+'7.2)

So the inputs are as follows;
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Below 1s another way to solve this kind of problems
with matrix computation algorithm. ’

Anautonomous nonlinear ordinary (vector) differential
equation for the time function X{(¢) in explicit form can be
denoted as

z= f(z) (9

with the initial condition X() = Xy, where the
underlined symbols denote column vectors of length n.

Any nonautonomous equation él = £(£’Z) can always

be put in autonomous form by simply adding an auxiliary
variable.

Let x(t) be the (continuous and piecewise smooth)
approximation to the solution, defined below. For ki,

..., let & % be the initial and final times of step k + 1

of the procedure hm =l “‘tk, be the time step size, and

let Xo = Xoand % =X() for k > 0.

We integrate a linear form of our differential equation
along step + 1 as follows. We denote the n n

Jacobian matrix of Z(E) by J(I)
f;(:f(xk) and‘]kz‘](xk).

For the sake of
simplicity,
linearization Jr +Ji (x—=%,) of J_{()—C) around®x .  The

approximate solution % along step k + 1, i.e., from =4

to ! =tk+l, is the solution of the differential equation
dz(t)
— =St (2) -z - (10)
with the initial condition (&) = The analytical

solution of the differential equation within step k + 1 is
z=70 ¢+ )« fitam, (1

where =t - tand (G) G' (& - 1). The initial
point of the following step will therefore be %« » | = x(tx
1), which is the final point of the current step.

We denote

GN=zt)-=, (12)
and combine this equation with- the last equation,

zt)=7¢(re J) * fitz, 13
'We can then -form a new equation:

NCEPARCAEEY BY (14)

where I is the n n identity matrix.

. To avoid analytical or numerical annoyances when J is
sm%ular or nearly singular, we consider an augmented
problem that avoids the matrix inversion altogether and is
therefore simpler and more robust: We define the
augmented (n + 1)-dimensional vectors

1= = - )

Then we can get an augmented (n + 1) (n +'1) matrix

Consider thé-

J
A= ((),-ﬁ) (16)

where the n-vectors 4, £ and 8 are considered column
vectors, and the superscript T indicates transposition.
Apart from an added zero eigenvalue, A has the same
eigenvalue -spectrum . as J. The above nonhomogeneous
differeritial equation becomes a homogeneous equation:

dy ’
= 4.y (17_)

with initial condition ﬂ(O) = 1y. The exact solution of

the augmented problem is
glr) = ey, (18)
which ~only requires the computation of a matrix
exponential and is also valid if ] is singular.

. Due to the definitions of and 0, the vector will be
given by the last column of e - A, while the vector %
will be given by the first n elements of . Therefore, at
the end of step k + 1, the value of the solution x(t)
provided by our method is

5"A-+1:ﬂ+§£(l"k+ )

(19)
where the n-vector {(h,ﬁl)consists of the first n
elements of
by ) =", (20)
Now we only need to focus on the details of the

. b . . .
computation of € t We will describe a simple method to

compute the exponential of .a matrix. Let Z be a square

matrix and I the corresponding identity matrix. The exact
formula is
o = lim 7+ 2 1)
Ao N _
A truncated approximation with a suitable b is
, 7.
ol = (I+ y)” (22)

This idea, which according to Knuth- can be traced back
to Pingala in 200 B.C., is much more economical in terms
of the number of matrix multiplications.

For the nonlinear system with input control

A time-free single-input nonlinear continuous—time

control system can be expressed with the following
state-space form.
de (t
) o o) +ola )t~ D) 23
Where X(0) = x, t€[t,,1,,,]
Consider time interval ze[_tk’tm] and  suppose

ut)=u, teft.t,]

Denote ¢ (1) = X(1) — x, el ] x = x(1)

Similarly the single input case can be expanded to

multi-input case. The discretization method of general
nonlinear system with multi-input delay is developed using
matrix exponential algorithm. A system with only two
time-delayed inputs will be considered for simplicity in
this  section. A time-delayed two-input nonlinear
continuous-time control system can be expressed with the
following state-space form.

’1";;” = F( () 1, (t— D,)g, (5(2) 41, (4 — D, gy (5(2))

2. Simulation and Results )
Simplified model of maneuvering an automobile

(24)



One example is considered in the computer simulations.
The example is a_ simplified model of maneuvering an
automobile(Henk Nijmeijer and Arfan van der Schaft,
1990). Exact solutionsfor ‘the systems are required in order
to validate the proposed discretization method of nonlinear
systems with tEe delayed multi-input. In this paper the
continuous Matlab ODE solver is used as an_exact
solution. In the simulation the discrete values obtained
using .the Taylor series expansion method are compared
with the values obtained through the continuous - Matlab
ODE solver at the corresponding sampled period. ’

The front axle of a simplified automobile maneuvering
system is shown in Fig 3. The middle of the axles linking

the front wheels has position(%-¥:)€ R while the rotation

of this axis is given by the angle®s. The states”>%:

related with rolling are directly controlled by input* and

the state Xsrelated with rotation is directly controlled by

U, | thus the governing nonlinear differential equation can

be obtained as followings;
xy sinz, 0

% Ty [= | cosxy ju; (t— Dy ) +10us (t — Dy)
Ty 0 1

At first we choose a small sampling period and small
time delay to verify the discretization method proposed in

(25)

this paper. The inputs of % and % are assumed to be step

finctions respectively whose magnitudes are =land

u, = 2~5'. The simulation result is shown in Table 1.
Here N of Taylor part is 1,35 and b of matrix part is

13,0

Time Matlab Taylor Matrix(x Matlab Taylor(x Matrix(x
step x1) {x1) 1 (x2) 2) 2)

200 0.1377 0.1377 0.1377 0.1414 0.1414 0.1414
400 0.3268 0.3268 0.3268 0.1997 0.1997 0.1997
600 05208 0.5208 0.5208 0.1603 0.1602 0.1603
800 0.6721 0.6721 0.6721 0.0326 0.0326 0.0327
1000 0.7436 0.7436 0.7436 -0.1518 -0.1518 -0.1518
1200 0.7180 0.7180 0.7180 -0.3481 -0.3481 -0.3481
1400 0.6014 0.6014 0.6014 -0.5080 -0.5080 ~0.5080
1600 0.4224 0.4224 0.4224 ~0.5924 -0.5924 ~0.5924
1800 0.2248 0.2248 0.2248 -0.5807 -0.5807 -0.5807
2000 0.0570 0.0570 0.0570 -0.4757 -0.4757 ~0.4757

Table 1 simulation results
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We got this algorithmwith many  .simulations. and
computation and proved that it was really better than the
taylor way when we need more exactly results without

much computing time.
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