Comparison and Optimization of Parallel-Transmission RF Coil Elements for 3.0 T Body MRI

3.0 T MRI를 위한 Parallel-Transmission RF 코일 구조의 비교와 최적화

  • Published : 2007.04.27

Abstract

In high field (> 3 T) MR imaging, the magnetic field inhomogeneity in the target object increases due to the nonuniform electro-magnetic characteristics and relatively high Larmor frequency. Especially in the body imaging, the effect causes more serious problems resulting in locally high SAR(Specific Absorption Ratio). In this paper, we propose an optimized parallel-transmission RF coil element structure and show the utility of the coil by FDTD simulations to overcome the unwanted effects. Three types of TX coil elements are tested to maximize the efficiency and their driving patterns(amplitude and phase) optimized to have adequate field homogeneity, proper SAR level, and sufficient field strength. For the proposed coil element of 25 cm ${\times}$ 8 cm loop structure with 12 channels for a 3.0 T body coil, the 73% field non-uniformity without optimization was reduced to about 26% after optimization of driving patterns. The experimental as well as simulation results show the utility of the proposed parallel driving scheme is clinically useful for (ultra) high field MRI.

Keywords