Proceedings of the KIEE Conference (대한전기학회:학술대회논문집)
- 2007.10a
- /
- Pages.182-183
- /
- 2007
An Automatic Fuzzy Rule Extraction using an Advanced Quantum Clustering and It's Application to Nonlinear Regression
개선된 Quantum 클러스터링을 이용한 자동적인 퍼지규칙 생성 및 비선형 회귀로의 응용
- Kim, Sung-Suk (Dept. of Electrical Eng., Chungbuk National University) ;
- Kwak, Keun-Chang (Dept. of Control, Measurement and Robotic Eng., Chosun University)
- Published : 2007.10.26
Abstract
본 논문에서는 전형적인 비선형 회귀문제를 다루기 위해 슈뢰딩거 방정식에 의해 표현되는 Hilbert공간에서 수행되는 Quantum 클러스터링과 Mountain 함수를 이용하여, 수치적인 입출력데이터로부터 TSK 형태의 자동적인 퍼지 if-then 규칙의 생성방법을 제안한다. 여기서 슈뢰딩거 방정식은 분석적으로 확률함수로부터 유도되어질 수 있는 포텐셜 함수를 포함한다. 이 포텐셜의 최소점들은 데이터의 특성을 포함하는 클러스터 중심들과 관련되어진다. 그러나 이들 클러스터 중심들은 데이터의 수와 같으므로 퍼지 규칙을 생성하기 어려울 뿐만 아니라 수렴속도가 느린 문제점을 가지고 있다. 이러한 문제점들을 해결하기 위해서, 본 논문에서는 밀도 척도에 기초한 클러스터 중심의 근사적인 추정에 대해 간단하면서 효과적인 Mountain 함수를 이용하여 효과적인 클러스터 중심을 얻음과 동시에 적응 뉴로-퍼지 네트워크의 자동적인 퍼지 규칙을 생성하도록 한다. 자동차 MPG 예측문제에 대한 시뮬레이션 결과는 제안된 방법이 기존 문헌에서 제시한 예측성능보다 더 좋은 특성을 보임을 알 수 있었다.