D-D1-25

Yield Variation as affected by Virus Incidence at Rice-Vetch Cropping System

Byeong-Jin Lee,† Byeong-Geun Oh†, Seung-Hwan Oh†, Jun-Hwan Kim, Sang-Yeol Kim*, Woon-Ha Hwang†, Jong-Woong Ahn†, Yeon-Chung Ku† and Zhin-Ryong Choi†

†Yeongnam Agricultural Research Institute, NICS, RDA, Miryang 627-823, Korea
‡College of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Korea

본 연구는 2006년도 영남농업연구소의 자운영묘에서 바이러스 발생병도에 따른 수량 변화

D-D1-26

Phytotoxic activity of barnyardgrass’ soil and its component of phytochemicals

Tran-Dang Khanh, Sun-Joo Lee, Luong-Chi Cong, Eun-Young Kang, Su-Hyun Seo, Jung-Kuk Ahn, Kwang-Ho Kim, and Ill-Min Chung

Department of Applied Life Science, College of Life and Environment Science, KonKuk University, KwangJinKu HwaYangDong, Seoul, 143-701

Barnyardgrass is one of the most noxious paddy weeds, causes great troublesome to many crops worldwide. In a bioassay, extract of paddy soil infested with barnyardgrass showed strong but selective suppression on growth of rice, whereas growth of barnyardgrass itself was the least influenced, as well as rice was inhibited by greater magnitude than other crops. By the use of a separation resin, eighteen compounds belonging to terpenoids, derivatives of cinnamic acid and ferulic acid, long-chain fatty acid, and steroid that potentially involved in the phytotoxic activities in barnyardgrass soil were isolated and identified by GC-MS. Of which quantities of linalool, 4-terpinenol, coumaran, methyl phenethyl ketone, and methyl ester cinnamic acid were 1.42, 0.37, 0.02, 3.12μg g⁻¹ wet soil, respectively. The present study demonstrates that barnyardgrass obtains strong allelopathic properties and it releases phytotoxins into soil field to compete with rice and other paddy weeds in its vicinity by chemical pathway.

*Correspondence author e-mail: imkim@konkuk.ac.kr (02-450-3730)