Effects of Growth Temperature on Sm_{0.2}Y_{0.8} Ba₂Cu₃O_{7-x} Superconductors Fabricated by Seeded Infiltration and Growth Myung Soon Kim^a, Yong Taeg O^a, Young Hee Han^b, Tea Hyun Sung^b, Chan Jong Kim^c, Dong Chan Shin^a Effects of growth temperature on YSmBaCuO₅ (211) phase distribution within $Sm_{0.2}Y_{0.8}Ba_2Cu_3O_{7-x}$ (123) phase was investigated. $Sm_{1.8}Ba_{2.4}Cu_{3.4}O_{7-y}(Sm1.8)$ seed crystals were used. The optimum melt temperature of melt infiltration-growth was 1055 °C. The growth temperature varied with an interval of 5°C from 985 to 1005° C. Single phase of 123 was stable at 995°C, and at that temperature 211 phase coexisted with the average particle size of 3.2 m within the 123 grains. When the growth temperature was lowered from 995°C with an interval of 5°C, the particle size of 211 phase increased 1.3 times at each interval. At higher growth temperature than 995°C the segregation of 211 phase and the other second phases were observed. Keywords: Melt infiltration-growth, Sm_{0.2}Y_{0.8}Ba₂Cu₃O_{7-x} (123) superconductors, Growth temperature ^a Department of Advanced Materials Engineering, Chosun University, 375, Seosuk-dong, Dong-gu, Gwangju, 501-759, Korea ^bSuperconductivity & Applications Group at Korea Electric Power Research Institute (KEPRI), 103-16, Munji-dong, Yusung-gu, Taejon, 305-380, Korea ^cNuclear nanomaterials development laboratory Korea Atomic Energy Research Institute (KAERI), Daejeon, 305-353, Korea