Effect of pre-heating on the shear bond strength and microhardness of composite resin Myoung Uk Jin*, Sung Kyo Kim Department of Conservative Dentistry, Kyungpook University, Daegu, Korea ## I. Objectives The purpose of this study was to examine the effect of pre-heating on the shear bond strength and microhardness and degree of conversion of composite resin. #### II. Materials & Methods Eighty extracted, noncarious human molars stored in isotonic saline at 4°C were used in the present study. Two coats of adhesive system (One-Step, Bisco, Schaumburg, IL, USA) were applied on tooth surfaces, and light cured for 15 seconds. For shear bond strength test, 4°C, 17°C, and pre-heated to 48°C, 56°C composite resin were used. A composite resin was packed into the mold and light cured for 40 seconds. After 24 hours of water storage, the specimens in each group were tested in shear mode using a chisel-shaped rod in an Instron testing machine at a cross-head speed of 1 mm/min. For the microhardness measurements, four different temperatures of composite resin were used as above. Vickers microhardness was measured using Microhardness Tester FMTM. Then, for 300 seconds, temperature change was examined with K-type thermocouple. Degree of conversions of each resin group was measured with FT-IR. The data for each group were subjected to one-way ANOVAs followed by the Tukey's HSD test at 95% confidence level to make comparisons among the groups. ### III. Results Higher temperature of pre-heated composite resin yielded higher shear bond strength. In both enamel and dentin groups, pre-heated to 56°C composite resin group yielded the highest shear bond strength. Higher temperature of pre-heated composite resin yielded higher microhardness value. Among the groups, pre-heated to 56°C composite resin group yielded the highest microhardness value. For temperature change, pre-heated to 56°C composite resin showed slow decline of temperature, and temperature above 48°C was maintained for the first 60 seconds. Higher temperature of pre-heated composite resin yielded higher degree of conversion. Increased polymerization temperature increases conversion of resin monomer, but only up to a certain temperature limit. ## IV. Conclusion Pre-heating composite resin has potential benefits including higher shear bond strength and microhardness value and degree of conversion.