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Multi-Robot Localization based on Distance Mapping
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ABSTRACT

This paper presents a distance mapping-based localization method with incomplete data which means
partially observed data. We make three contributions. First, we propose the use of Multi Dimensional Scaling
(MDS) for multi-robot localization. Second, we formulate the problem to accomodate partial observations
common in multi-robot settings. We solve the resulting optimization problem using 'Scaling by Majorizing a
Complicated Function (SMACOFY, a popular algorithm for iterative MDS. Third, we not only verify the
performance of MDS-based multi-robot localization by computer simulations, but also implement a real
world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the
proposed method is almost similar to that of Monte Carlo Localization(MCL).

1. Introduction

Localization is an important problem in mobile robotics, and
the literature is rich with solutions to variants of the problem. In
recent years, there has been increased activity in the area of
collaborative approaches to multi-robot localization. A simple
approach for cooperative localization system with no
infrastructure was first proposed in [1]. This approach used a
‘station-mover' strategy which divided all robots into two
groups. At any given time, one group is stationary and the other
is moving. Moving robots are thus able to use stationary robots
as landmarks to correct for odometry error. The groups
interchange roles and iterate until all robots reach their targets.

A dominant modern approach is the probabilistic Monte Carlo
Localization (MCL) [2] utilizing an independence property to
estimate the position of the individual robots. A study [3] on the
influence of different group trajectories on the accuracy of MCL
showed that through appropriate cooperation, localization error
decreases while the number of robots increases. Other
approaches taking advantage of relative inter-robot range and
bearing observations also have been proposed [4, 5, 6]. A
maximum likelihood estimation-based approach is given in [7],
and an Extended Kalman Filter [8] using relative observations
of range and bearing is described.

In general, most of robot localization methods, which have
been proposed in recent, have concentrated on a question that is
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“"Where am 17" in an environment with known/unknown map,
however, we regarded multi-robot localization problem as a task
of finding relative positions of each robot in multi-robot team.

In this paper we propose a distance mapping approach to
multi-robot localization with partially observed inter-robot
distances as the relative observations. We apply Multi-
dimensional scaling (MDS) to this problem. MDS is a well-
studied distance mapping method with a history of application
in many fields such as pattern classification, data visualization,
mathematical psychology, and so on. We use an iterative MDS
algorithm called SMACOF [12] which can minimize a stress
function of both full distance and incomplete distance matrix
through an optimization technique. In addition we utilize the
motion information of robots to improve the performance on
both convergence and stability by predicting likely positions of
robots when direct inter-robot range estimates are unavailable.
At each iteration of our algorithm if range measurements are
unavailable, we experiment with three choices to estimate the
missing information - random, where no information is passed
from one step to the next, previous, where at each iteration a
missing range value is substituted by the value at the previous
iteration, and prediction, where the value at the previous
iteration is combined with the current motion information to
produce an estimate of the current missing value. We performed
extensive simulations to verify which choice is good. Our
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experiments show that the prediction strategy is the best

choice for initialization

2. Distance Mapping

A distance mapping is that one takes a set of objects and a
distance metric and maps those objects to a space in such a way
that the distances among objects are approximately preserved.

Consider a set of objects S = {s,,5,...,5,} and a distance
function & where for any two object 5,5, €8, 8(s;,5))
(denoted 51.1.) represents the distance between s, and s Ir
The function § can be a Euclidean or a general distance

metric. A general distance metric & must satisfy the following

properties:

» Nonnegative : 3(s,5)=0
* Symmetry : 8(s,t) = 8(t,5)
» Triangle inequality : J(s,#) < 8(s, w)+5(w,1)

where §, f, W are objects. Assuming the target p

dimensional space (usually p=2 or p=3) is T € R?, the

distance mapping finds a embedding function @:S+>T
satisfying  O(s;,5,) = d(@(s,),9(s;)) where & is a

metric of space S and d is a metric of space T .

Although MDS has its origins in psychometrics and was
originally proposed to help understand people's judgments of
the similarity of members of a set of objects, it has found
applications in diverse fields as marketing, sociology, physics,
political science, biology, and engineering. MDS is a generic
term that includes many different specific types. These can be
classified according to whether the data are qualitative or
quantitative, the number of similarity matrices, the nature of the
MDS model, and the implementation of the algorithm to solve
the MDS problem. In this paper, we assum that MDS-based
multi-robot localization is a classical-metric-unweighted MDS
problem because a distance on Euclidean space must be
quantitative, may be an unweighted matrix, and can be treated
with only one similarity matrix. As one of the distance mapping,
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MDS finds a embedding function which minimize a 'stress'. The
stress function of classical-metric-unweighted MDS can be
expressed as a naive least-squares equation as follows

N
2
¢=Z((Sij_dij) . m
ij
We can modify the stress function @ in Eq. (1) into matrix

form as follows

$X) = 28 —dy(X)

= 26,+2d,(X)-235,d,(X) @
isj L ij
= 35, +r(X'TX)-2r(X"Q(X)X)
i,j s
where I'=NI,., —1,., and
d; .
_E—(X)’ l;e.]’ d,](X);éO
i
Q=w;(X)=1 =S, i=j @3

ki

2.1 Iterative MDS

Iterative MDS minimizes the stress function using numerical
optimization techniques. Line search and trust-region methods
can find a local optimum, whereas a genetic algorithm, tabu
search, and simulated annealing can achieve global optimum.
This paper considers only line search methods for optimization
because of both efficiency and speed of convergence. The
procedure of generic iterative MDS is summarized as follows:

k=0

Step 0:  Start with a guess X O . Initialization.

Step 1: Determine a direction A% anda step size a®

Step 2: Update
XED = xB 4 gPA® g1 g(X V) <PX)

Step 3: Goto step ! until stop condition is satisfied. The
popular choice of a descent direction is a gradient descent

A(k) — _V¢(X(k))

2.2 SMACOF
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Unfortunately, the stress function ¢ is non-convex so it is

impossible to find a global minimum. Majorization is a method

which minimizes a majorizing function ¥ (X,Z) instead of

the stress @(X) .

w(X,Z) must be quadratic by

mazorization and satisfy @(X)<y(X) . Foliowing the

formulation in [12] for stress majorization (SMACOF: Scaling
by Majorizing a Complicated Function), we define a quadratic
majoring function for stress as follows.

w(X,Z)= Za,,j +tr(X'TX)-2tr(X"Q(Z)2)

2 ) 8, +tr(X"TX) = 2tr(X QX)) X) = $(X).

The gradient of Y (X,Z) wrt X is

Vw(X,2)=2TX -2Q(Z)Z. )
Wehave X by rewriting T'X = Q(Z)(2),
X=T')(2)Z = %Q(Z)Z. )

Ifweset X® =Z® then the gradient of the stress @$(X)
(instead of Eq. ((4))) is given by
V@(X)=2TX -20(X) X. (6)

From the Eq. ((5))((6)), the majorization update rule can be
derived as

X(k+])

I QX)X
X®_x®ir QX)X

X% —%r? (Qrx » -2Q(x)Xx)
X® —%1‘7V¢(X )

1
X ——vgx®).
o )

™

3. Localization

This section illustrates a detailed explanation of the proposed
localization technique. We assumed each robot is equipped with
a range sensor such as a laser finder, sonar, or camera to identify
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distance to other robots. We also assume that each robot is
equipped with a set of inertial sensors (e.g. a compass and
odometer) to compute its own motion. Define the configuration

x(5) =[x, (£) x,(r)] as the current position of robot i at
time f. The state we want to estimate is

X0 =[x,(®), x,(1), x;(2),..., xy (1)]. ®

3.1 Initialization

At each optimization step, the algorithm can be initialized.
We implement three strategies for this:
* Random -- If we have no prior about the environment and the
dynamics of each robot, coordinates obtained at random are set
as initial point.

XO0)-N(u,0%)

This policy is very simple but unstable from the point of view
of convergence. To make matters worse, it causes mapping
inconsistency like the flip ambiguity.

* Previous -- When the movement of each robot is comparably
small or the iteration time step is short, it may be desirable to set
initial locations to the previous coordinates.

XO@)=X(t-1)

* Prediction -- The system is initialized with the predicted value
of the current pose by applying a motion model to the previous
pose.

XO=X(t-1)+pX()
1t is difficult to know the true motion dynamics pX (f), but
pz? (f) can be estimated from motion sensors. Combining the

previous coordinates with this X (f) we can set

X0 =X@¢-D+pX@).

4. Experiments and Results
We performed several experiments to validate the proposed
multi-robot localization.

Case I: No missing distance

Starting in a basic environment, there are 6 robots marked R0

to RS . We assumed that all inter-robot distances are available

and motion dynamics can be obtained via odometry on each
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with both prediction and previous.

Fig. 1. Embedding results of random initialization.
Fig. 2. The results for the ‘no missing data’ case

robot which has Gaussian noise( & = 0.2 ) as the measurement

error. Robots are made to move randomly for 1200 time steps.

As noted in Section, we applied three strategies for initialization
at each optimization step. ‘Fig. 2-(a) shows the plot of
convergence for each policy. The figure tell us that initializing
with the prediction procedure, which is generated by adding
the previous coordinates to the motion information, is more than
3 times faster than random initialization. The
procedure was more than 2 times faster than the

previous
random case.

Table 1. Relative location error and convergence speed

Random | Previous | Prediction
Iterations (converge) 40.92 18.20 12.46
o 5.15 3.75 2.87
Relative errors 0.0156 0.0143 0.0134
o 0.0023 0.0026 0.0029

To check the accuracy of the proposed distance mapping with
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the three initialization strategies, we evaluated the mean of
the relative errors between the real position and the computed
position in 2D coordinate space. The error is defined in Eq. (9).

PS(P)-6(X)P

RelErr = 5
(N-1)

®

, where 6(P), 5(()2' )) are distance matrices for the real

position P=[p,, p,,..., py] and the embedded(computed)

position X= [, %5, %5 ]

The relative errors are compared in Table I. Even though it
seems like their accuracy have little difference in the terms of
the relative error, the random initialization has some problems.
When it is required to reconstruct the absolute position, the
random initialization needs more than two or three robots to
have known positions. Fig. 1-(a) represents the case of
translation and rotation requiring at lest two. Fig. 1-(b) indicates
the case of translation, rotation, and flip requiring at least three.
Fig. 1-(c) shows the worst case where a solution was not found
due to divergence. For absolute localization, Fig. 2-(c) shows
results in an environment where we experimented with between
5 and 100 robots performing wandering.

The absolute error is defined as AbsErr =PP— X P. As

shown in Fig. 2-(a), prediction is more accurate than
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previous. The number of robots might not affect the
performance of absolute localization.

Case II : Partially observed distance

To better reflect a real situation, we performed experiments on
the Player/Stage simulator {14] with 9 robots. We configured a
world with complex corridors causing occlusions at most time
step. Each robot has a laser finder which can observe other
objects within 5 meters range in an 180 degree angle, a
odometry device to calculate its motion, and a fiducial bar-code
to be identified by other robots. We used the prediction
technique for initialization at each optimization step. Fig. 4
indicates the multi-robot team consisting of five robots. All
members of the robot team can communicate each other via
wireless network. Instead of using a range sensor such as ultra
sonic or laser scanner, we use only omnidirectional camera or
pan-tilt-zoom(PTZ) camera. Therefore, we take both distance
and ID information of the others simultaneously. The robot
named commander must keep all information for localization
and previous positions of all members of the multi-robot team.
It first collects data from other robots, and then it generate
relative positions of the team using MDS localization. Finally,
commander broadcasts the result of localization to all members.

5. Discussion and Conclusion

In this paper, a global localization and map building is not
described, but a relative multi-robot localization is presented
since we have only focused on relative positions of multi-robot
team. We make three contributions - we propose the use of
Multi Dimensional Scaling (MDS) for multi-robot team
localization; we formulate the problem to accomodate partial
observations common in multi-robot settings; and we verify the
performance of MDS-based multi-robot localization via both
simulations and real implementation.
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Fig. 3. The trajectory of the ground truth (represented as dots *.") and
the embedding by the proposed method (represented as symbols).

437

4215870

Connarsar

i 132.188.10.100

Dovice . amal-giroctorel Gamess
Color bar < red

Fig. 4. Implemented Robot Team having 5 robots

We take advantage of the motion information of robots to help
the optimization procedure. Three policies are compared at each
time step: random, previous, and prediction (constructed
by combining the previous pose estimates with motion
information). Using extensive empirical results, we show that
the initialization by the prediction method results in better
performance in terms of both the accuracy and speed when
compared to the other two initialization techniques. In addition
we verify the performance of both MCL-based and MDS-based
multi-robot localization are almost same.

Our current work is in establishing principled techniques for
comparing our approach with MCL. In general we are trying to
find relations and distinctions between probabilistic approaches
and distance mapping-based
information. Furthermore, we are interested in a theoretical
analysis of error bounds and uncertainty of this approach.

localization with motion
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