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3D SIMULATION OF FLAPPING FLAGS IN A UNIFORM FLOW
BY THE IMMERSED BOUNDARY METHOD

Wei-Xi Huang' and Hyung Jin Sung*2

We present an immersed boundary (IB) method for 3D simulation of flappingflags in a uniform flow.
The proposed formulation is manipulated on the basis of an efficient Navier-Stokes solver adopting the
fractional step method and a staggered Cartesian grid system. A direct numerical method is developed to
calculate the flag motion, with the elastic force treated implicitly. The fluid motion defined on an Eulerian
grid and the flag motion defined on a Lagrangian grid are independently solved and the mass of flag is
handled in a natural way. An additional momentum forcing is formulated from the flag motion equation in a
way similar with the direct-forcing IB formulation and acts as the interaction force between the flag and
ambient fluid. A series of numerical tests are performed and the present results are compared qualitatively
and quantitatively with previous studies. The instantaneous flag motion is analyzed under different conditions
and surrounding vortical structures are identified. The effects of physical parameters on the flapping frequency

are studied.
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1. INTRODUCTION

The flapping of flags in wind is a commonplace and
familiar phenomenon in everyday life, but still puzzles
people due to its extremely complicated dynamics. The
flapping dynamics is also essential in the tail or wing
motions of swimming and flying animals. For a passively
flapping flag, it exerts inertial and elastic forces on the
fluid, while the fluid acts on the flag through pressure
and viscosity. Together, these interactions between the
fluid and the flag can give rise to self-sustained
oscillations at its natural frequencies. Even for active
biological swimming and flight, the frequency of the tail
or wing flapping cannot be selected arbitrarily[1]. Recent
researches revealed a simple relationship between the
flapping frequency, amplitude and forward speed for a
wide range of species of animals to fly or swim at high
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propulsive efficiency[2-4]. Hence, the study of flapping
dynamics is helpful to understand such biological
processes.

Fluid structure interactions like the flag-in-wind problem
are challenging to numerical simulation on account of their
complex ~geometries and freely ~moving boundaries.
Recently, several immersed boundary (IB) methods have
been developed for simulating fluid-structure  interactions.
Among these methods, the IB method developed by
Peskin[5] has its advantage in dealing with two-way
coupling interactions by an efficient transform between
Bulerian and Lagrangian variables. However, the boundary
is usually considered to be massless or neutrally buoyant
in previous IB methods. In our work aimed at simulating
flexible filaments in a fluid as in Zhang et al’s
experiment[6], we proposed a different formulation to
handle the mass of a filament in a natural way[7].

So far, direct simulations have been carried out for the
interactions between 2D fluid flow and flexible filaments
or plates using various methods, including the IB method
[7,8]. However, few numerical results on 3D flags
flapping in a viscous fluid flow have been available In



3 EEY

YV

TIVTTY

3\

3\

Y
AV
LY

IRERRUREEY

T
e
HTH pilguty
T L4 1
Lt LA
e i
[-11 !
CH-d TH
,:/ % s,
E::é . 4
é%j
522
A

Fig. 1 Schematic diagram of the Lagrangian grid system
and its curvilinear coordinates (sl,sz) on the flag
surface.

literatures, Kim and Peskin[9] simulated 3D flag-in-wind
problem using their penalty immersed boundary method,
but no details of numerical discretization about the 3D
flag model was described and results were reported briefly
in their paper. In the present study, we extend our
previous work to the 3D simulation of flapping flags in a
uniform flow, manipulated in the frame of IB formulation.
Problem formulation is described in the next section and
numerical method is introduced in Section 3. We present
numerical results in Section 4. Finally, a summary is
given in Section 5.

2. PROBLEM FORMULATION

The flag motion is described by Lagrangian variables.
A curvilinear coordinate system (s,,s,) is attached to the
flag surface, as shown in Fig. 1. Among the four
boundaries, one is fixed at s, =0 while the other three
are free boundaries. The longitudinal coordinate s, ranges
from 0 to Z, and the latitudinal coordinate s, ranges
from 0 to A, where L and H denote the length and
width of the flag, respectively. Here we neglect the
flagpole to keep the symmetry of geometry about
s, = H/2. The direction of the gravity force is along the
s,-axis, which breaks the symmetry about s, = /2 and
causes the flag to sag down.

The non-dimensional form of the flag motion equation
can be written as

ot ij=1
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where ,X'(sl,SQ,t) denote the Cartesian coordinates of an
atbitrary point on the flag surface, o, denote the
stretching and shearing coefficients, +,; denote the bending
and twisting coefficients, g denotes the gravity force with
g=lgl, and F denotes the Lagrangian forcing exerted on
the filament by the surrounding fluid. In Eq.(l), Fr is
Froude number defined as Fr=gL /U2 where L,
denotes the characteristic length, and o, :%-( T, If;)
oX 89X

as; st

the simply-supported condition, i..

with 7}, = . At the fixed boundary, we use
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At the free boundaries, we have
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The non-dimensional governing equations for the

incompressible fluid flow are

D 1 oo
T Vp+t ReVu+f (6)
Veu=0 (7)

where u=(u,v,w) is the velocity vector, p is the
pressure, Re=p U, L. /p is the Reynolds number with
p, the fluid density and u the dynamic viscosity, and f
is the momentum forcing applied to enforce the no-slip
boundary condition along the IB. Note that we use
different characteristic densities, i.e. the fluid density p,
and the flag density p,, in the non-dimensionalization of
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Eq.(6) and Eq.(1) respectively. In Eq.(6) the momentum
forcing f is scaled by p,U2%/L,, while in Eq(l) the
Lagrangian counterpart F is scaled by p, U2 /L,. Such
difference  should be taken into
transformation  between the
momentum forcings.

In the present study, we evaluate the momentum
forcing term at the Lagrangian points directly from the
flag motion equation (Eq.(1)). The time-discretized flag
motion equation is written as follows:

consideration  for
Lagrangian and Eulerian

+1_ -1
X7 XX ppgrl ®)
At

where the superscript n denotes the nth time step, At
denotes the time increment, and RHS regroups the elastic
force terms and the gravity force term in Eq.(1) for
simplicity. To obtain the desired position of the IB at the
next time step, the momentum forcing term can be given
by

X, oxr e xm

At

Ft=—

+RHS™! ©

where X’Z,H represents a estimation of the new position
of the fluid point, which is initially aligned along the IB.
In other words, the momentum forcing in Eq.(9) forces
the IB points to move with surrounding fluid points.
:X’f},ﬂ is estimated by

Xy = Xp+ U At (10)

where X7, is the position of the fluid point at the present
time step and U} is the fluid velocity interpolated at the
Lagrangian point X".

In practice, we found that the coefficient —1/A¢ in
Eq.(9) becomes very large since At is usually given a
small value, and one may fail to obtain a stable solution.
The first term on the right hand side of Eq.(9) works

essentially as a feedback function. Small variation of
“*1 may cause large

—(:Y?,,H— 2X"-I—X"‘1) /A, Hemce, we  neglect
RHS™! in Eq.(9) and relax the coefficient of the term
(X —2xm xY) /AR, e

(X5 - 274 X (11)
where « is a large negative constant. After obtaining the
Lagrangian momentum forcing term, we transform it to

change in the term
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the Fulerian form by the Dirac delta function

j"‘(m,t):pfpfmt;(x*X)dSldSz (12)

where p = p,/p,L, comes from non-dimensionalization due
to the fact that the Dirac delta function s
three-dimensional but there is only two integrals ds, and
ds, in Eq.12). The difference between the present
formulation and those of Peskin’s [8,9] is that the flag
motion equations are solved independently here, making it
possible to dealing with additional constraints on the IB
motion easily, such as the mass of the IB.

3. COMPUTATIONAL SCHEME

We use the operator A to represent the discretized
form of the elastic force. The discretization of Eq.(1) can
be written as

+1 -1

XXX gyt p o preBO (13)
At g

where the elastic force term is treated fullly implicitly, the
momentum forcing term is calculated by Eq.(11), and the
last term BC is the boundary condition vector which
contains the known positions at the fixed boundary. After
rearrangement, Eq.(13) becomes

AX-n+1: Rn+1 (14)

where A=7I-AFK with [ the unit matrix of size
M(N+1) and R™ collects all the other terms. To solve
Eq.(14), we need to know the initial position and velocity
the flag. We found that symmetry and positive-definiteness
of the matrix A is preserved in this study. Hence, the
conjugate gradient method can be utilized to solve the
Eq.(14) in an efficient manner due to its fast convergence
rate.

The discretized N-S equations are solved by the
fractional step method on a staggered Cartesian grid. The
velocity components and momentum forcing are defined
on the staggered grid, whereas the pressure is applied at
the centers of cells. Fully implicit time advancement is
employed, with the Crank-Nicholson scheme being used
for the discretization ofthe diffusion and convection terms.
Decoupling of the velocity and pressure is achieved by
block LU decomposition in conjunction with approximate
factorization. Details of the approximate factorization can
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be found in Kim et al. [10]. Due to the implicit treatment
of the nonlinear convection terms, further decoupling of
the intermediate velocity components is made and finally a
system of tridiagonal matrices is formed instead of a large
sparse matrix. The momentum equation is then solved
directly without iteration, and the computational cost is
reduced significantly. The pressure Poisson equation is
solved by a direct method using FFT or a multigrid
method. The pressure is then used to correct the velocity
field to satisfy the continuity equation.

The overall process of the present numerical algorithm
for simulating the flag motion in a uniform flow is
summarized as follows:

(1) At the nth time step, we know the fluid velocity
field u™ and the filament position X™ and velocity
U™, Estimate the new position of the fluid point

X;H by Eq.10). Then calculate the Lagrangian

momentum forcing F™ by Eq.(11).

(2) Spread the Lagrangian momentum forcing to the
Eulerian grid by wusing Eq(l2). Solve N-S
equations to obtain the updated fluid velocity field
and pressure field. Interpolate the fluid velocity at
the IB to obtain UR*! and calculate the new
position of the fluid point X3 '= X5+ Up ™' At.

(3) Substitute F™ into Eq.(14) and solve this equation
to obtain the flag position at the new time step
Xt as  well as the flag  velocity
U= (X™*1- X™)/ At. This ends one time step
marching.

4. RESULTS

In the present simulations, the computational domain for
fluid flow is a rectangular box, extending from
(-1,-4,-1) to (7,4,1) in the streamwise (z),
transverse (y) and spanwise (z) directions, respectively.
Here the domain sizes are scaled by the character length
L,. Dirichlet boundary conditions are used at the inflow
(z=—1) and far-field boundaries (y=x4), a convective
boundary condition is used at the outflow (z=7), and a
periodic boundary condition is used in the spanwise
direction. A grid size of 513x151x129 is used to
discretize the computational domain. The grid mesh is
uniformly distributed along the =z- and z-axes, while
stretched in the y-axis. The fixed boundary of the flag
(s, =0) is aligned with the z-axis, with its midpoint
coincided with the origin of the Eulerian coordinate

117,94

r19.80
Iz l
Y

/& w Filow
AN

%

£=20.82

Fig. 2 Instantaneous flag positions in a flapping period at
Re =200 and Fr=0.
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Fig. 3 Time history of the transverse position of the trailing
edge of the flag at Re =200 and Fr = 0: ——, point
Ay , point B; -----— , point C.

system. The flag surface is discretized by a uniform grid
system As, = As, =1/64, which is equivalent to the
Eulerian grid spacings Az, Ay and Az near the IB.
Fig. 2 shows instantancous flag positions during a
flapping period at Re=200 and Fr=0. Other
parameters used here are L=10, H=10, p=10,
b1y = gy = 1000, by, =10 and vy =55 =71 =0.0001,
which is unchanged in this simulation unless otherwise
stated. The four instants used in Fig. 2 are labeled
sequentially in Fig. 3, which shows time history of the
transverse position of the trailing edge of the flag. The
flag is flapping uniformly in the latitudinal (s,) direction
as shown in Fig. 2. As an evidence (Fig. 3), the two
corner points and the midpoint of the trailing edge travel
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Fig. 4 Time history of the streamwise and transverse drag
forcesof the flag at e = 200 and Fr = 0.
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Fig. 5 Vortical structures shedding from the flapping flag at
Re =200 and Fr=0.

coincidentally in the transverse direction. Fig.4 displays
time history of the streamwise drag force coefficient C,
and the transverse lift force coefficient C,. It is seen that
both C, and C, varies periodically with time, while the
frequency of the former is twice of that of the latter. This
phenomena is similar to that of flow over a circular
cylinder[11], since vortical structures shedding from the
flag trailing edge at the upper and lower transverse
positions both rtesult in the maximum streamwise drag
force, but result in the maximum and minimum transverse
lift force respectively. Fig. 5 shows 3D instantancous
vortical structures around the flag identified using A,
-criterion. We can see a transverse part and two
streamwise parts in a vortical structure due to the flapping
motion of the trailing edge and the two side edges.

When the Reynolds number is increased to at
Re =500 (Fig. 6), small wavy motions are apparent on
the flag surface, although the main wave is still travelling
along the s,-direction and uniform in the s,-direction.
Due to increase of the Reynolds number, the vortex tings
are formed behind the flag (Fig. 7). Interestingly, the
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Fig. 6 Instantaneous flag positions in a flapping period
at Re =500 and Fr=0.

Fig. 7 Vortical structures shedding from the flapping flag at
Re =500 and Fr=0.

vortex shedding from the trailing edge forms an O-shape
structure, while that from the side edges forms a Crshape
structure which is connected to the O-shape structure at
the bottom.

Now we take into account the effects of the gravity
force. The direction of the gravity force is along the
spanwise  direction, ie. g/ g=1(0,0—1). We use
Re=500 and Fr=0.2 in this simulation. Fig .8 shows
instantaneous flag positions at four time instants which are
also marked in the time history of the transverse position
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Fig. 8 Instantancous flag positions in a flapping
period at Re = 500 and Fr=10.2.

Fig. 9 Time history of the transverse position of the trailing
edge of the flag at Re =500 and £r=0.2: —,
pomt A; ......... ,point B; ------—- , point C.

of the trailing edge (i.e. points 1-4 in Fig. 9). It is clear
that the flag is sagging down at ¢=15.60 as shown in
Fig. 8, and Fig. 9 indicates that points A, B and C are
travelling out of phase. As a result, the upper corner on
the trailing edge experiences a fast rolling near the
maximum or minimum transverse positionduring each
period, which is shown in Fig. 8 from ¢t=13.98 to
t=14.46 as well as in Fig. 9 from point 1 to point 3.
Since small wavy motions become apparent and irregular
in the flag surface, the streamwise and transverse drag
forces (see Fig. 10) are not smooth any more as
compared with the case without gravity force (Fig. 4).
However, the fundamental frequency of the streamwise
drag force is still twice of that of the transverse drag
force, indicating the main vortical structure is remaining
similar to the case without gravity force. The 3D
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t

Fig. 10 Time history of the streamwise and transverse drag
forces of the flag at Re =500 and Fr=0.2.

Fig. 11 Vortical structures shedding from the flapping flag
at e =500 and Fr=0.2.

instantaneous  vortical structures around the flag are
displayed in Fig. 11. The O-shape structures are still
evident while the Q-shape structures are broken due to the
sagging-down of the flag and the fast rolling of its upper
corner.

The Strouhal number of the flag’s flapping at different
Reynolds numbers is collected in Fig.12 where we set
Fr=0. There are two seclections of the length scale for
the definition of the Strouhal number. One is the
characteristic length Z, which is also used in the
definition of Reynolds number; the other is the flapping
amplitude A which is measured as the maximum flapping
span. Specifically, they are written as St=fL,/U,, and
St =fA/U,, respectively, where f denotes the
frequency of flapping. As shown in Fig. 12(a), St keeps
constant with increasing Reynolds number. Shelley et
al[12] also observed in their experiment that the flapping
frequency is proportional to flow speed, which is
equivalent to the statement that St is constant. The result
indicates that the inertial force is dominant over the
viscous force exerted on the flag by its surrounding fluid.
In Fig. 12 (a), it is cvident that the density has a
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Fig. 12 Strouhal number defined in terms of (a) the length of the
flag and (b) the flapping amplitude of the flag as a function
of Reynolds number: —m—, p=0.5; —A—, —@—, —
o—p=10;, —¥—, p=20. We set H=5/8 and
YL =Yoo = Vi3 = 0.0001 for all the cases except that
H=1 for —€— and ~y; = Yoy =35 = 0.001 for —e

significant influence on S¢, while effects of the flag width
and the bending and twisting coefficients are insignificant.
However, the difference of St' at different conditions is
small, as shown in Fig. 12(b). St' increases slightly with
increasing Reynolds number and is between 0.15 and 0.25
for all cases in Fig, 12(b) when Re > 300. This range is
close to the result of Shelley et al[12], where the
reported value is between 022 and 031. More
interestingly, Taylor et al.[3] calculated S¥ of 42 species
of birds, bats and insects in unconfined cruising flight and
found that it is comstrained in a narrow range
02< 8 <04, as well as swimming dolphins, sharks
and bony fish[2]. Especially, birds using direct flight have
St =0.2, which is within the range of the present
results. This comparison indicates that the active flying
and swimming in nature exploit a similar fluid dynamics
with that of the passive flapping to obtain high propulsive
efficiency.

5. SUMMARY

In the present study, we presented an immersed
boundary (IB) method for 3D simulation of flapping flags
in a uniform flow, on the basis of an efficient
Navier-Stokes solver adopting the fractional step method
and a staggered Cartesian grid system. The fluid motion
defined on an Eulerian grid and the flagmotion defined on
a Lagrangian grid are independently solved. An additional
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momentum forcing is formulated from the flag motion
equation and acts as the interaction force between the flag
and ambient fluid. In the present method, the mass of flag
is handled naturally and the elastic force is treated
implicitly.

A serics of numerical tests were performed and the
instantaneous flag motion was analyzed under different
conditions. The flag flaps uniformly when the gravity
force was excluded. An O-shape vortical structure was
shedding from the trailing edge, connected by a (-shape
structure shedding from both side edges. After including
the gravity force, the sagging-down motion was evident
and the rolling motion of the upper-comer was observed.
As a result, the vortical structures were deformed greatly.
The Strouhal number defined in terms of the character
length Z, was invariant with Reynolds number, indicating
that the inertial force is dominant over the viscous force
exerted on the flag by its surrounding fluid. If the
Strouhal number is defined in terms of the flapping
amplitude, it increases slightly with increasing Reynolds
number and is between 0.15 and 025 when Re > 300
for all cases, consistent the general value of a flying or
swimming animal.
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