P-103

랫드대뇌피질 신경세포에 있어서 과산화수소로 유발된 산화적 신경세포손상에 대한 지유의 보호호과

 1 충북대학교 수의과대학, 2 경북대학교 농업생명과학대학 응용생물화학부 Nguyen Thi Thuy Ha^{1} , 조순옥 1 , 김주연 1 , 송경식 2 , 성연희 1*

Protective effect of Sanguisorbae Radix on H₂O₂-induced oxidative neuronal cell damage in rat cortical neurons

¹College of Veterinary Medicine and Research Institute of Herbal Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea,

²College of Agriculture and Life-Sciences, Kyungpook National University, Daegu, 702-701, South Korea Nguyen Thi Thuy Ha¹, Soon-Ock Cho¹, Ju-Yeon Kim¹, Kyung-Sik Song² and Yeon-Hee Seong^{1*}

Objectives

Sangguisorbae radix (SR) from Sanguisorba officinalis L. (Losaceae) is widely used in Korea and China due to its various pharmacological activity. We previously reported that SR prevent A β (25–35)-induced neuronal cell damage *in vitro*. The present study aims to investigate the effect of the methanol extract of SR on H_2O_2 -induced neurotoxicity using cultured rat cortical neurons.

Materials and Methods

- Materials
 - Methanol extract of SR
 - H₂O₂
- Methods
 - Primary neuronal culture: Cerebral cortical neurons (E15 SD rat)
 - Analysis of cell viability: MTT colorimetric assay, Hoechst 33342 staining
 - Measurement of Glutamate release: HPLC ECD

Results and discussions

SR, over a concentration range of $10\text{--}50~\mu\text{g/ml}$, inhibited H_2O_2 -induced neuronal cell death, as assessed by MTT assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. Pretreatment of SR (10, 30 and 50 $\mu\text{g/ml}$) inhibited glutamate release into medium induced by $100~\mu\text{M}$ H_2O_2 , which was measured by HPLC. In conclusion, we demonstrated that SR prevents H_2O_2 -induced neuronal cell damage *in vitro*.

^{*}주저자 연락처(Corresponding author) : 성연희 E-mail:<u>vepharm@chungbuk.ac.kr</u>Tel.: 043-261-2968

Fig. 1. Inhibitory effect of SR on H_2O_2 -induced neuronal cell death in cultured cortical neurons. Neuronal death was measured by the MTT assay. ## p<0.01 compared to control. ** p<0.01 compared to 100 μ M H_2O_2 .

Fig. 2. Inhibitory effect of SR on H_2O_2 -induced glutamate release. ## p<0.01 compared to control. ** p<0.01 compared to 100 μ M H_2O_2 .

Fig. 3. Inhibitory effect of SR on H_2O_2 -induced apoptosis of cultured cortical neurons as measured by Hoechest 33342 staining. ## p<0.01 compared to control. ** p<0.01 compared to 100 μ M H_2O_2 .