Mutagenicity and Antimutagenicity of Aged Sulfur-Containing Edible Cultivars

Khejhae Lee*, Aeri Park, Daewoon Choi, Geunpyo Choi¹⁾, Jongdai Kim, Jinha Lee[†]

Institute of Bioscience and Biotechnology,
Institute of Life Science, Kangwon National University

1) Gangwon Provincial College

Objectives

Most of sulfur-containing food materials have various biological and medicinal activities. However, they have been investigated to their biological activity on a case by sample basis. It is necessary that they have to be compare their biological activity using by same conditions and methods for optional use to consumers. In this study, 3 cultivars(garlic (*Allium sativum L.*), onion (*Allium cepa L.*), Korean leek (*Allium tuberosum R.*), were selected and made aged samples by heating to compare their biological activities (mutagenicity, antimutangenicity and antiradical activity).

Materials and Methods

Materials: The raw materials 3 cultivars [(garlic (Allium sativum L.), onion (Allium cepa L.), Korean leek (Allium tuberosum R.)] were purchased in the market. The aged materials were made by using heating systems (autoclave and dry-oven). The aged samples were prepared by 70 % ethanol(EtOH) and then fractionationed by hexane, chloroform, ethyl acetate, and butanol from the ethanol extracts.

Methods: The mutagenicity and antimutagenicity on Ames strains(TA 98, TA100) of the samples were investigated. The antiradical activity was studied by electron spin resonance spectroscopy(ESR).

Results

1. The mutagenicity of 70% EtOH extracts of the 3 samples on Ames strain(TA100 and TA98) was shown a weak mutagenicity in the presence of S9 metabolic activation mixture(S9 Mix) and without S9 Mix and also antimutagenicity on the standard mutagens(MNNG, 4NQO and B(a)P) a similar activity. The antiradical activity on superoxide and hydroxyl radicals by ESR did not indicated a strong.

[†]주저자 연락처(Corresponding author): 이진하 E-mail: jinhalee@kangwon.ac.kr Tel:33-250-6454

Table 1. Mutagenicity of 70 % EtOH Extracts of Sample on Ames Strains

		,	His +			
			revertant/plate			
		Dose	TA 100		TA 98	
		(mg/plate)				
			(-S-9)	(+S-9)	(-S-9)	(+S-9)
Spontaneous			170±10	165±4	26±8	22±4
DMSO (100μl)			193±6	125±6	30±4	32±3
MNNG $(0.5\mu g)$			1192±12			
$B[a]P(10\mu g)$		_		602±10		174±5
Onion	Allium cepa L.	0.25	187±3	166±5	29±2	25±4
		0.5	194±2	176±2	41±5	37±5
	·	1	206±1	235±1	52±7	43±4
		2	210±6	253±3	63±7	60±2
Garlic	Allium satuvum L.	0.25	169±6	154±9	30±1	22±1
		0.5	236±4	213±2	29±3	22±6
		1	298±5	259±10	39±5	28±4
		2	321±5	294±9	48±1	39±5
Korean Leek	Allium tuberosum L.	0.25	251±7	209±7	20±9	26±4
		0.5	307±1	245±6	40±6	40±2
		1	360±8	312±9	45±5	40±4
		2	395±6	345±3	56±9	46±2

Table 2. Antimutagenicity on Ames Strain(TA98) of the Fractions of Aged Samples

Sample (mg/plate)	70% EtOH Ex	Hexane	CHCl₃	EtOAc	BuOH	Aqueous	MNNG
0	0.00	0.00	0.00	0.00	0.00	0.00	554.00
50	51.29	62.55	45.40	56.23	48.88	47.54	
100	64.97	69.79	44.42	60.41	58.80	49.89	
150	64.70	64.70	47.77	65.50	62.45	53.55	
200	75.31	70.33	56.80	67.52	68.31	62.10	

Table 3. Antimutagenicity on Ames Strain(TA100) of the Fractions of Aged Samples

Sample	700/	E+OU Ev	Hoveno	CHCl₃	E+O A o	BuOH	A	MANINIC
(mg/plate)	70% EtOH Ex	Пехапе	CHC13	EtOAc	BUUM	Aqueous	MINING	
0		0.00	0.00	0.00	0.00	0.00	0.00	554.00
50		393.00	342.00	366.33	316.67	318.00	398.67	
100		335.33	313.33	331.00	308.67	306.00	329.33	
150		299.33	321.00	340.67	300.33	265.33	301.00	
200		231.00	277.00	297.67	267.67	275.67	280.00	