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Abstract 
 
The main purpose of this paper is to describe the code tracking performance of a non-coherent digital delay lock loop 
(DLL) or coherent DLL while tracking GNSS signal in the presence of signal masking. The masking effect is usually 
caused by buildings that obscure the signal in either a periodic or random manner. In some cases, ideal masking is 
used to remove random or periodic interference. Three types of the masked signal are considered - no masking, 
periodic masking, and random masking of the signal input to the receiver. The mean time to lose lock (MTLL) of the 
code tracking loop are evaluated, and some numerical result and simulation results are reported. Finally, the steady-
state tracking errors on the performance of the tracking loop in interference environment are also presented.    
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1. Introduction 
 

The Global Navigation Satellite System (GNSS) provides 
three dimensional absolute position, velocity, and time 
information. An important class of predicting the performance of 
a GNSS system is the ability of the code tracking loop to 
maintain “lock”. When the signal was masked or blanked, most 
the GPS positioning method suffer degradation in accuracy and 
increase the processing time. The masking effect is usually 
caused by buildings, wall, trees, or random manners that obscure 
the signal periodically. Certainly make use of ideal masking to 
overcome and remove interference too. The goal of this paper is 
to analyze these effects on GPS code tracking system. The code 
tracking system considered here is a second order delay lock 
loop (DLL) with an early-late gating of 1/2 chip. The 
conventional DLL (coherent or non-coherent) has been reported 
in the literature; see, e.g., [1][2][3]. In this paper, we first 
discussed the code tracking performance in the presence of noise 
and signal masking. Three masking function are considered: no-
masking, periodic masking, and random masking. Finally, the 
mean time to lose lock (MTLL) of the code tracking loop for 
GNSS signal blanking are also presented. The most commonly 
used performance criteria for the DLL are the tracking jitter and 
MTLL. The MTLL denotes the mean time that a tracking loop 
remains synchronized. The calculation of the MTLL is based on 
Fokker-Planck techniques [2][3][4]. For the coherent second-
order DLL, the MTLL that calculation based on the results in [5]. 
For non-coherent or higher-order loops can be described for 
example in [6][7]. 

 
 

2. Code Tracking Loop Description 
 
2.1 Delay Lock Loop Models 
 
The goal of this paper is to investigate the code tracking 
performance in the signal masked environment. The purpose of 
code tracking is to perform and maintain fine synchronization. A 

common fine synchronization strategy is to depict a code 
tracking loop which can track the code phase in the presence of a 
small frequency error. After the correct code phase is acquired by 
the code tracking loop, a phase lock loop (PLL) can be used the 
track the carrier frequency and phase. In this paper, we describe 
two alternate methods, coherent delay lock loop and non-
coherent delay lock loop, for GNSS code tracking system. Figure 
1(a) demonstrates the model for both the data modulated signal 
and code phase error measurement. The C/A signal is generated 
and is controlled by a masking switch that can randomly or 
periodically “masks” the signal. The generated signal combines 
the masked signal and white Gaussian noise then fed into the 
delay lock loop. It was assumed that perfect carrier demodulation 
was utilized in the simulation. The delay lock loop considered 
here are first order coherent DLL (c-DLL) and noncoherent DLL 
(nc-DLL) and the discriminator is referred to as the normalized 
early minus late with an early-late gating of 1/2 chip. From 
Figure 1(a), the early-late discriminator output error signal is 
then passed through the loop filter to the VCO that steering the 
clock of the local PRN code generator and that is designed not 
only to reduce the tracking error but also to produce an accurate 
estimate of the original signal at its output. The model for the nc-
DLL is illustrated in Figure 1(b), and is the same as Figure 1(a), 
except that the each low pass filter of Figure 1(a) with an 
lowpass filter followed by a square-law envelope detector. The 
difference between the situations to choose an nc-DLL and a c-
DLL depends on if the carrier frequency and phase are known or 
not. If both of them are known already, the c-DLL can be utilized. 
When neither of them are known, the nc-DLL must be in use to 
track the received code. Thus, we assume the incoming signal is 
RF filtered and down-converter to IF and remove the data 
modulation in c-DLL and carrier phase recover. Besides, the 
Doppler perturbation is neglected in this simulation. The 
received mathematical model in the baseband is given by 
 

( ) ( ) ( )( )
cDLL s d 0r (t)= 2P c t- m t cos t n(t)+ +τ ω φA    (1) 

where sP  is the IF signal power, c ⋅( )  is the pseudonoise PN 



signal with chip rate c cf = 1 /T , dτ  is the time delay and varies 
with time, the signal frequency, 0 20f /= ω π , is assumed to be 
known, ( ) ( )m tA  is the masking function that there are three 
masked model are considered: no masked, periodic masked, and 
random masked signal of the input to the receiver. The notation 
A( ) , 1 2 3, ,=A  denote different form of masked model.  
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(a) Coherent Early-late DLL 
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(b) Non-coherent early-late DLL 

Figure 1. Both the baseband c-DLL and nc-DLL, respectively.  
(a) C-DLL modeling for masked signal (b) Nc-DLL 
modeling for masked signal 

 
n(t)  is the total receiver noise which include the thermal noise, 
possible co-channel interference, and the lower multipath signal 
and usually modeled as white Gaussian distribution that is 
expressed as 
 

0 0I Qn(t) 2 n (t)cos( t) 2 n (t)sin( t)= ω + ω        (2) 

 

where In (t)  and Qn (t)  are in-phase and quadrature-in-phase 
low-pass noise components that are independent, zero mean with 
power spectral density 0N / 2 . The nc-DLL mathematical model 

is similar to the c-DLL except that the navigation data b(t)  is 
considered in this model, thus the model is given by 
 

( )
ncDLL s d 0r (t)= 2P c(t- )b(t)m (t)cos( t ) n(t)τ ω φ+ +A    (3) 

 
where b(t)  is a binary valued unit function ( 1± ). 
 
 
2.2 Masking Model 
 
In the following, we introduced the masking model in this 
simulation. Three kinds of masking models are considered, it is 
no-masking, periodic masking, and random masking. The 
defined process m(t)  is a collection or ensemble of time 
waveforms that change from 1 to 0, change from 0 to 1, or 
remain the same at possible transition time point that are equally 
spaced a distance T  apart along the time axis. The 
mathematical no-masking function is given by 
 

1 1( )m (t) =  for all [ ]0t ,T∈ ,        (4) 
 

where T  is the closed time interval. The periodic masking 
function are modeled to have a aT  ms duration in a period of 

rT  ms for a duty cycle of ( ) 100p a rT T /T %= × , and is described 
on each subinterval for i th period of the time axis as 
 

2 1 for
0 for 1 1

r a r( )

r r a

iT T t iT
m (t)

(i )T t (i )T T
+ ≤ ≤⎧

= ⎨ − < < − +⎩  
for  0 1 2i , , , ,K= "                   (5) 

 
where K  is the total period number. Finally, the random 
masking function model, m(t) , using 1 and 0 as values for 
random.  
 

[ ]3 0 1 for all 0( )m (t) random( , ), t ,T= ∈         (6) 

 
The defined process m(t)  is a normal distribution random 
process. Figure 2 shows the no-masking, periodic masking, and 
random masking model.  
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(b) Periodic masking 

t  
(c) Random masking 

Figure 2. Three masking model for (a) no-masking, (b) periodic 
masking, and (c) random masking  

 
 

2.3 Masking Signal Terms in the Delay Lock Loop 
 

The code tracking loops under consideration are illustrated in 
Figure 1. Figure 1(a) is a coherent code tracking loop that forms 
a early correlator output minus the late correlator output to drive 
the loop filter. The digital baseband signal pass through the 
bandpass filter and correlated with early and late correlators can 
be approximated as follows: 
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(7) 
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(8) 
 

The output of early correlator, ( )Ee t , is given by correlation 
between the incoming baseband signal ( )cDLLr t  and the locally 
generated replica ( ) 0

ˆˆ- ( / 2)0 d cc t T cos( t )± Δ −τ ω φ  in which 

0c ( )i  is the local generated spreading code, 1j = − , φ̂  is the 
estimation phase error of phase φ  , iT   is the integration time, 

dτ̂  is its DLL output estimated values of code delay dτ . 
Substituting both (1) and (2) into (7) and (8), the early and late 
correlator output can be expressed as 
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Where CR ( )i  denotes autocorrelation function of the PN 
sequence, and both the ( )EN t  and ( )LN t  are total noise of 
correlation signal. The autocorrelation of this function is defined 
as 
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where τ  is the phase shift of the replica function. When the 
phase of the replica is the same as the original function, 0dτ = , 
the maximum correlation is obtained. Next we assumed that the 
value of ˆφ φ−  in Eqs. (9) and (10) is ˆ 0φ φ− =  at baseband. 
Because neglecting the sum frequency term which will have no 
effect at baseband. Then the error signal can be described by 
 

( )
c Ec Lc

c
s c c

e e - e

P Sα ε νΔ

=

= +
        (12) 

 

in which the noise density of cν  is Nν (one-sided), α  can 
be regarded the average power reduction factor after masking 
function effect. Under this assumption, that the inverse masking 
duration is much greater than the loop bandwidth. The residual 
power, also call the “modulation self-noise”, could be neglected 
[5] in this loop, and the shape of discriminator characteristic 
function c

cS ( )εΔ  is given by Eq. (13) 
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The quantity ( )ˆ /c d d cTε τ τ= −   is the phase delay error of the 
loop. The value of c

cS ( ) 0εΔ ≠  will lead to a static error in the 
DLL. Assumed the estimated phase error / 2cε ≤ Δ , and an 
wide front-end bandwidth, and we will find it convenient to 
define a normalized slope dK  by 
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Then we may express the error signal as 
 

c
c d c s ce K Pα ε ν= +        (15) 

 
Figure 3 depicts the block diagram of the linearized code 
tracking loop in which 1 / s  is the transfer function of the 
voltage control oscillator (VCO), ( )F s  is the loop filter, and 

c
d sK Pα  is the sensitivity of the discriminator. 
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Figure 3. Linearized coherent DLL. 

 
For the first-order DLL, s 1F( ) = , and the closed-loop transfer 
function scH ( )  is 
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In particular, let nB  be the equivalent noise bandwidth, the 

variance on phase error (jitter) estimation (in the unit of 2
cT ) 

due to noise in the closed-loop operation is [9] 
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where c

S (f)ν  represents the power spectral density of noise 
cν , [ ]E i  denote the ensemble average, and the noise density 

Nν  of  cν  (after low-pass filtering to smooth the transients) 
has a value at low frequency of ( )c

d 0 cK N / TΔ . Thus, the variance 



of the error (in the unit of 2
cT ) can be expressed as 
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In the previous discussion, we assumed a coherent signal to 
baseband and removal of the data demodulation prior to the DLL 
tracking. In the following, we consider an nc-DLL to code 
tracking system. Figure 1(b) illustrated the nc-DLL and it 
operates on a modulated carrier and simply add a square-law 
envelope detector after the lowpass filter in Figure1 (a). Assume 
that the quantization error can be neglected, and then the output 
of error signal driving the loop filter is given by 
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where 2

Ence  and 2
Lnce  are the early component and late 

component at the correlator output, respectively. The quantity 
( )ˆ /nc d d cTε τ τ= −   is the phase delay error of the loop and 

′α  is the power reduction factor after masking function 
m( t )  effect. Owing to the low-pass filtering operation, 

2m ( t )  fluctuates around its mean value. The residual power, 
also call the “modulation self-noise”, could be neglected [5] in 
this loop. The discriminator noise ncν  is the white Gaussian 
noise assumed to be normally distributed with zero mean and 
variance 2

ncνσ . The power spectrum density of ncν  is derived 
in [1] and [8], from this, the standard deviation can be described 
as follow: 
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where nB  is loop noise bandwidth. s 0P /N  is the carrier to 
noise ratio of the satellite. For the linearized discriminator gain 
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dK  is given by 
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For the numerical simulations, the error signal nce  given in 
(17) is normalized to the input noise power 2n 0 nP N B /= . Thus, 
the normalized signal power and loop noise are described as 
follow: 
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Therefore, the normalized error signal can be expressed in the 
form of: 
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For the early-late non-coherent DLL, the discriminator can be 
linearized in its S-curve linear range and the error signal can be 
expressed as: 
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where 1Δ ≤  is the spacing between the late and early 
correlators. The discriminator function, also called the noise-free 
S-curve, will depend upon the front-end bandwidth. Figure 3 
show the S-curves for a wide front-end bandwidth (20MHz) and 
narrowband front-end bandwidth (2MHz) corresponding to three 
values of early minus late correlator spacing: Δ = 1 chip, 0.5 
chips, and 0.25 chips. For a large front-end bandwidth, the 
discriminator function is linear and when the error signal is 
within these bounds, the complete tracking loop is a linear 
feedback control loop and can be analyzed by basic linear control 
theory. Finally, for a first order DLL it is known that the closed-
loop transfer function sncH ( )  is given by  
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and the variance on phase error (jitter) estimation (in the unit of 

2
cT ) of an nc-DLL using the early-late power discriminator is as 

follow: 
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Now approximate nc

S (f)ν  with 0
nc

S ( )ν , in other words assume 
that the noise spectral density is essentially flat across the loop 
bandwidth [9], thus 
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Figure 3. S-curve of non-DLL early-late discriminator. 
 
 

3. Performance Analysis and Simulation Results 
 

In this section we investigate and compare the mean time to lose 
lock (MTLL) of different loop structures. The MTLL is a figure 
of a merit  for the assessment of performance of GPS 
tracking loop by evaluating the ability of the tracking loop to 
maintain locked time. In other words, the MTLL characterizes 
the mean time that the DLL stays in its tracking range, while the 
DLL falls out of lock and a re-acquisition process is set going. 
One model for the MTLL is derived through solving the Fokker-
Planck equation. The MTLL Equation solutions in the DLL and 
other code tracking loops are presented in [10], [11], and [12]. 
The final MTLL for the first order DLL with one chip correlator 
spacing is derived in [4] and shown to be: 
 

1 5 1 5 2 2
2 0

1
4

. .

n

MTLL exp ( x ) / exp ( y ) / d x d y
B τ τε

τ

σ σ
σ

⎡ ⎤ ⎡ ⎤= −Λ −Λ⎣ ⎦ ⎣ ⎦∫ ∫
        (30) 

 
where ( x )Λ  is the integral of the discriminator error function.  
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In [4], a general form of MTLL for different early-late correlator 
separation of 2N chip is given by 
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Actually, the result in (31) is valid for any closed loop operation, 
with an early-late discriminator. Figure 4 indicates the delay 
lock loop MTTL results for the case that C/No = 30 dB-Hz and 

15nB =  Hz. The masks are modeled to have 10 ms duration in a 
period of 200 ms. Thus the signal is masked once every 200 ms 
for a duty cycle pT  of 5%. As we can see, the random masking 

nc-DLL dropped lock slightly earlier than the periodic or the no-
masking case. The simulation time was set to be 15 seconds 
simulation time. Thus the tracking results in the nc-DLL 
simulation model can be plotted in Figure 5. Direct evaluation 
for the simulated parameters of Eq. (29) with 0 95.α′ =  with 

1Δ =  chip correlator separation yields the standard deviation, 
0 513_ nc . chipεσ =  and the simulation yields about 0 518. chip . 

The results show an increase in _ ncεσ  of about 2.4%, whereas 
the simulation shows an increase for periodic masking of about 
3.6%, which is entirely close agreement. There are the same 
results in the c-DLL. 
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(b) Periodic duty factor = 20% 

Figure 4. Numerical integration of MTLL for DLL. (a) Duty 
factor = 5%; (b) Duty factor = 20%. 

 
Figure 6 shows the results with the same condition of Figure 5, 
except the periodic masking duty factor is increased to 

5 10 15 20 25 30 35 40pT , , , , , , , ,=  and 45% , respectively. The 
phase error for different DLL and masking model is given in 
Table 1. 



 
Table 1. Phase error for different masking function. 

C/No = 30 dB-Hz; Bn = 15 Hz; 1Δ =
Phase error (chip) 

Periodic 
DLL type 

None 
5% 20% 

Random

Theory 0.5 0.512 0.625 - c-DLL 
Simu. 0.501 0.513 0.628 0.812 

Theory 0.5 0.513 0.567 - nc-DLL 
Simu. 0.506 0.518 0.578 0.751 

 
 

 

 

 
Figure 5. Nc-DLL tracking results with the three masking model 

at C/No = 30 dB-Hz and 5% duty factor. 
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Figure 6. Periodic masking duty factor v.s phase error (chip) 

 
 
4. Conclusion 
 
In this paper, we have investigated the performance of the 
coherent and non coherent delay lock loop under various signal 
masked environment. The masked signal was modeled as 
periodic, random, and non-masked case. The MTLL and standard 
deviation of the phase error are used for assessing delay lock 
loop performance. Numerous masking values were simulated and 

it supposed that the masking duration is smaller than the inverse 
DLL loop bandwidth. The results show a little degradation to 
code tracking performance using the small pseudo random 
masking. However, the c-DLL had a higher phase error 
compared to the nc-DLL when the duty factor exceed to 30%. It 
is the effect of masking in c-DLL is to degrade the receiver 
power by ( )210 log α− , where α  is the power reduce factor 
loss relative the periodic masking duty factor. The tracking 
performance is also discussed under the effects of the signal 
masking. The results show that the random masking degrades the 
DLL performance more severe than the other masking models. 
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