ACCURACY IMPROVEMENT OF LOBLOLLY PINE INVENTORY DATA USING MULTI SENSOR DATASETS

  • Kim, Jin-Woo (Yonsei University, School of Civil and Environmental Engineering) ;
  • Kim, Jong-Hong (Yonsei University, School of Civil and Environmental Engineering) ;
  • Sohn, Hong-Gyoo (Yonsei University, School of Civil and Environmental Engineering) ;
  • Heo, Joon (Yonsei University, School of Civil and Environmental Engineering)
  • Published : 2006.11.02

Abstract

Timber inventory management includes to measure and update forest attributes, which is crucial information for private companies and public organizations in property assessment and environment monitoring. Field measurement would be accurate, but time-consuming and inefficient. For the reason, remote sensing technology has been an alternative to field measurement from an economic perspective. Among several sensors, LiDAR and Radar interferometry are known for their efficiency for forest monitoring because they are less influenced by weather and light conditions, and provide reasonably accurate vertical/horizontal measurement for a large area in a short period. For example, Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED) in the U.S. can provide tree height information and DSM. On the other hand, LiDAR DSM (the first return) and DEM (the last return) can also present tree height estimation. With respect to project site of loblolly pine plantation in Louisiana in the U.S., the accuracy of SRTM C-Band approach estimating tree height was assessed by the LiDAR approaches. In addition, SRTM X-Band and NED were also compared with the results. Plantation year in inventory GIS, which is directly related to forest age, is high correlated with the difference between SRTM C-Band and NED. As a byproduct, several stands of age mismatch could be recognized using an outlier detection algorithm, and optical satellite image (ETM+) were used to verify the mismatch. The findings of this study were (1) the confirmation of usefulness of the SRTM DSM for forest monitoring and (2) Multi-sensors- Radar, LiDAR, ETM+, MODIS can be used for accuracy improvement of forest inventory GIS altogether.

Keywords