VARIABILITY OF THE TRENDS OBSERVED FROM SEAWIFS-DERIVED SUB-MICRON AEROSOL FRACTION OVER EAST ASIAN SEAS BASED ON DIFFERENT CLOUD MASKING ALGORITHMS

  • Li, Li-Ping (Graduate School of High-technology for Human Welfare, Tokai University. Department of Physics, Ocean University of China) ;
  • Fukushima, Hajime (Graduate School of High-technology for Human Welfare, Tokai University) ;
  • Takeno, Keisuke (Graduate School of High-technology for Human Welfare, Tokai University)
  • Published : 2006.11.02

Abstract

Monthly-mean aerosol parameters derived from the 1998-2004 SeaWiFS observations over East Asian waters are analyzed. SeaWiFS GAC Level 1 data covering the Northeast Asian area are collected and processed by the standard atmospheric correction algorithm released by the SeaWiFS Project to produce daily aerosol optical thickness (AOT) and ${{\AA}}ngstr{\ddot{o}}m$ exponent imageries. Monthly mean AOT and ${{\AA}}ngstr{\ddot{o}}m$ exponent values are extracted from the daily composite images for six study areas chosen from the surrounding waters of Japan. A slight increasing trend of ${{\AA}}ngstr{\ddot{o}}m$ exponent is found and interpreted as about 4-5% increase in submicron fraction of aerosol optical thickness at 550nm. Two cloud screening methods, including the standard cloud masking method of SeaWiFS and the one based on the local variance method, are applied to the SeaWiFS data processing, in an attempt to inspect the influence to the observed statistical uptrend which probably induced by different cloud mask algorithms. The variability comes from the different cloud masking algorithms are discussed.

Keywords