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Abstract 

The ordered weighted averaging (OWA) operator by 

Yager has received more and more attention since its 

appearance. One key point in the OWA operator is to 

determine its associated weights. Among numerous 

methods that have appeared in the literature, we notice 

the maximum entropy OWA (MEOWA) weights that 

are determined by taking into account two appealing 

measures characterizing the OWA weights. Instead of 

maximizing the entropy in the formulation for 

determining the MEOWA weights, the new method in 

the article tries to obtain the OWA weights which are 

evenly spread out around equal weights as much as 

possible while strictly satisfying the orness value 

provided in the program. This consideration leads to the 

least squared OWA (LSOWA) weighting method in 

which the program tries to obtain the weights that 

minimize the sum of deviations from the equal weights 

since entropy is maximized when the weights are equal. 

Above all, the LSOWA weights display symmetric 

allocations of weights on the basis of equal weights. 

The positive or negative allocations of weights from the 

median as a basis depend on the magnitude of orness 

specified. Further interval LSOWA weights are 

constructed when a decision-maker specifies his or her 

value of orness in uncertain numerical bounds.  

1. Introduction  

A multiple criteria decision making (MCDM) method 

under certainty largely consists of two phases: 1) 

construction of decision problem and information 

specification, and 2) aggregation and exploitation [1][2]. 

Among others, synthesizing judgments is an important 

part of MCDM methods. Yager [14] introduced the 

ordered weighted averaging (OWA) operator to provide 

a method for aggregating multiple inputs that lie 

between the max and min operators. As the term 

‘ordered’ implies, the OWA operator pursues a 

nonlinear aggregation of objects considered. The OWA 

operator is generally composed of the following three 

steps [20]: 

(1) Reorder the input arguments in descending order. 

(2) Determine the weights associated with the OWA 

operator by using a proper method. 

(3) Utilize the OWA weights to aggregate these 

reordered arguments. 

In the short time since its first appearance, the OWA 

operators have been used in an astonishingly wide 

range of applications in the fields including neural 

networks [15][16], database systems [17], fuzzy logic 

controllers [18][19], group decision making problems 

with linguistic assessments [8][9], data mining [13], 

location based service (LBS) [12] or more  generally 

geographical information system (GIS) [10][11] and so 

on.. 

Appealing point in the OWA operator was the 

introduction of the concept of orness and the definition 

of an orness measure that could establish how ‘orlike’ a 

certain operator is, based on the values of its weighting 

function. Thus the measure can be interpreted as the 

mode of decision making circumstances by conferring 

the semantic meaning to the weights used in 

aggregation process. If an aggregated value is close to 

the maximum of the ordered objects, the aggregation 

pursues the ‘orlike’ aggregation. If an aggregated value 

is close to the minimum of the ordered objects, on the 

other hand, the aggregation pursues the ‘andlike’ 

aggregation. This concept perfectly coincides with the 

traditional decision making theory in which max 

decision principle denotes the optimistic decision 

context and min decision principle denotes the 

pessimistic decision context. 

On the other hand, Yager, based on a measure of 

entropy, proposed a measure of dispersion which 

gauges the degree of utilization of information in the 

sense that each of weighting vectors considered can be 

different to each other by degree of dispersion though 

they have the same degree of orness [14]. One of the 

first approaches, suggested by O’Hagan [7], determines 

a special class of OWA operators having maximal 

entropy of the OWA weights for a given level of orness, 

algorithmically based on the solution of a constrained 

optimization problem. The resulting weights are called 

maximum entropy OWA (MEOWA) weights for a 

given degree of orness and analytic forms and property 

for these weights are further investigated by several 

researchers [3][4][5][6].  

Instead of maximizing the entropy in the formulation 
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for determining the MEOWA weights, the new method 

in the article tries to obtain the OWA weights which are 

evenly spread out around the equal weights as much as 

possible while strictly satisfying the orness value 

provided in the program. This consideration leads to the 

least squared OWA (LSOWA) weighting method in 

which the program tries to obtain the weights that 

minimize the sum of deviations from the equal weights 

since entropy is maximized when the weights are equal. 

Several properties of the LSOWA weights are 

investigated in detail. Interval LSOWA weights are 

constructed when a decision-maker specifies his or her 

value of orness in uncertain numerical bounds and 

further we present a method, with those uncertain 

interval LSOWA weights, for prioritizing alternatives 

that are evaluated by multiple criteria.  

 

2. Determining the LSOWA weights 

 

An OWA operator [14] of dimension n is a mapping f: 

R
n
→R that has an associated weighting n vector 

W=(w1,w2,…,wn)
T
 such that wi∈[0,1] for 

i∈I={1,2,…,n}and ∑i∈Iwi=1. Central to this operator is 

the reordering of the arguments, based upon their 

values, in particular an argument ai is not associated 

with a particular weight wi but rather a weight wi is 

associated with a particular ordered position i of the 

arguments. The OWA aggregation is a nonlinear 

aggregation because of the ordering process used.  

Yager
3
 introduced two characterizing measures 

associated with the weighting vector W of an OWA 

operator. The first one, the measure of orness of the 

aggregation, is defined as 

∑ −
−

=
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i
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and it characterizes the degree to which the aggregation 

is like an or operation. If we consider the special cases 

of OWA operators, 
TW ]0,,0,0,1[* Κ=  (maximum operator), 
TW ]1,,0,0,0[

*
Κ=  (minimum operator), 
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then it can easily be shown that 
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The OWA operators with many of the weights near the 

top will be an ‘orlike’ operator )5.0)(( ≥Worness , while 

those operators with most of the weights at the bottom 

will be ‘andlike’ operators )5.0)(( ≤Worness . As to the 

semantics of the OWA’s measure of orness, Yager 

suggests that, based on Hurwicz’s model, the measure 

of orness can be interpreted as a measure of optimism 

of the decision making, while the measure of andness is 

a measure of pessimism.  

Yager [14] proposed a measure of dispersion which 

gauges the degree of utilization of information.  

∑−=
=

n

i
ii
wwWdisp

1

ln)( . 

This measure can be used to gauge the degree to which 

the information about the individual aggregates is used 

in the aggregation process. We note that since this 

dispersion is really a measure of entropy and thus the 

following properties are valid (1) the dispersion is 

minimum if wi=1 for some i and disp(W)=0 (2) the 

dispersion is maximum if wi=1/n and disp(W)=ln n. 

O’Hagan [7] determined a special class of OWA 

operators having a maximal entropy of the OWA 

weights for some prescribed value of orness. This 

approach is based on the solution of the following 

mathematical programming problem: 
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Filev and Yager [5] provided an analytic solution to the 

above constrained optimization problem with an aim to 

use the MEOWA weights among others in dynamic 

environments, in which the value of Ω changes, without 

having to solve a new constraint optimization problem.  

In the LSOWA method, the program is to obtain the 

weights that minimize the sum of deviations from the 

equal weights instead of maximizing entropy itself 

since it is known that the entropy is maximized when 

the weights are equal. This consideration can be set 

forth by the following constrained mathematical 

program: 
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The program (2a)-(2c) is a quadratic mathematical 

program, thus well-known nonlinear software package 

such as, for example, Lindo solver suite can be used to 

obtain the LSOWA weights. If we omit the nonnegative 

constraints on wi in the formulation, we can find a nice 

analytic solution for determining the LSOWA weights, 

It will help us to deeply understand the LSOWA 

weights and simplify the process used for generating 

the LSOWA weights. In doing so, a composite function 

can be built such as  
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which denotes the Lagrange function of constrained 
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optimization problem (2a)-(2c), where α and β are real 

numbers. Then the partial derivatives of L are computed 

as 

j
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From Equations 3a and 3b, we obtain, for the wi’s 
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From Equation 4b, we obtain the following relationship 

between α and β 

βα
2

1
−=                                    (5)                                                

and, substituting this equation into Equation 4a, we get  
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Finally, by substituting for the wi’s as expressed by 

Equation 6 into Equation 3c, we obtain an equation 

relating the specified degree of orness and the Lagrange 

parameter β: 

)1(

)5.0)(1(24

+

Ω−−
=

nn

n
β .                           (7)                                                  

Furthermore Equation 6 can be simplified by using 

Equation 7  
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The analytic solution shown in Equation 8 takes a 

simple and closed form as compared to the analytic 

solution for determining the MEOWA weights. Thus 

the LSOWA weights can be easily determined once the 

value of orness and the number of objects to be 

aggregated are specified in advance. As was intended 

by the mathematical formulation in (2a) – (2c), the 

LSOWA weights are determined possibly so as to be 

located around the equal weights (i.e., 1/n) while 

satisfying the prescribed value of orness. There exist 

some peculiar characteristics in the LSOWA weights 

that are not in the MEOWA weights. We shall show 

them in several theorems and corollaries below.  

 

THEOREM 1. If the specified value of orness is 0.5, then 

the LSOWA weights are Wave=[1/n, 1/n, …, 1/n]. 

Proof. It is obvious from Equation 8.              ■ 

 

THEOREM 2. For orness 0.5<Ω≤1, the LSOWA weights 

form a decreasing sequence, wi>wj for i<j. For orness 

0≤Ω<0.5, to the contrary, the LSOWA weights form an 

increasing sequence, wi<wj for i<j. 

Proof. 
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Therefore, for 0.5<Ω≤1 and i<j, wi>wj and for 0≤Ω<0.5 

and i<j, wi<wj.                                ■ 

 

THEOREM 3. The LSOWA weight at median is 1/n. That 

is, 
nnw
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COROLLARY 1. Let us denote 
nii

w 1−=∆ , i.e., 
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The LSOWA weights are rank-based weights and 

allocate some portion of weights symmetrically on the 

basis of median. More specifically, if the value of 

orness is greater than 0.5, positive portion of weight 

(i.e., )
i

∆  is added to the left-sided weights at median 

and the same portion of weight is subtracted to the 

right-sided weights at median. On the contrary, if the 

value of orness is less than 0.5, positive portion of 

weight is added to the right-sided weights at median 

and the same portion of weight is subtracted to the 

left-sided weights at median. According to the 

Corollary 1, it is obvious that ∑ ∆=∑ ∆ +

+

==
n

i ii i
n

n

2

1
2

1

1 , when n 

is odd and ∑ ∆=∑ ∆ +==
n

i ii i
n

n

11
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2 , when n is even. 

Example. For n=5 and Ω=0.7, the LSOWA weights 

from Table I are given  

W(0.7)=(0.36, 0.28, 0.2, 0.12, 0.04). 

It is evident that w3=0.2 from Theorem 3. Further it 

holds that 
1+−∆=∆

ini
, i=1,2,3 according to Corollary 1 

because 16.0)7.05.0(
65

)1512(6
1

=−
×

−−×
=∆ ,  

08.0)7.05.0(
65

)1522(6
2

=−
×

−−×
=∆ , 0

3
=∆ , 
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Thus, the LSOWA weights can be rewritten as 

W(0.7)=(0.2+0.16, 0.2+0.08, 0.2, 0.2-0.08, 0.2-0.16). 

 

It is well-known that if a weighting vector W is optimal 

under some predefined value of orness Ω, then its 

reverse, denoted by W
R
 and defined as  

wi
R
=wn-i+1 

is also optimal under degree of orness (1- Ω). Indeed, 

as was shown by Yager
3
,we find that 

disp(W
R
)=disp(W) and 

orness(W
R
)=1-orness(W). 

It should be noted that Equation 8 for determining the 

LSOWA weights are derived by omitting the 

nonnegative conditions on the weights wi’s and thus has 

some drawbacks. In other words, if the specific 

LSOWA weights are determined by using the analytic 

solution and they are nonnegative, the solution is fine, 

but if the solution results in negative weights, we can 

not use the LSOWA weights as they are. Instead, we 

have to solve the nonlinear program by the use of 

software package. The index of weights and the 

prescribed value of orness in the analytic solution are 

two parameters that determine the usefulness of the 

LSOWA weights.  

 

3. Aggregation multiple objects with interval 

LSOWA weights 

 

In this section, we deal with a situation in which the 

LSOWA weights are specified not in the form of exact 

numerical values but in the form of uncertain forms. 

This is because when we work with vague or imprecise 

knowledge, it is difficult to estimate the weights with 

precision. Then, a more realistic approach may be to 

use imprecise assessments instead of exact numerical 

values, that is, by assuming that the parameters which 

are allowed in the problem are assessed by means of 

e.g., interval, weak ordinal, or set inclusion. 

Specifically, in the formulation for determining the 

LSOWA weights, the orness can be given not in the 

exact numerical value but in the interval numbers. It 

seems reasonable that the interval orness renders the 

LSOWA weights also interval weights. We consider a 

simple method for deriving such interval weights. This 

approach is appropriate for a lot of problems, since it 

allows for the representation of information in a more 

direct and adequate form if we are unable to express it 

with precision. 

 

THEOREM 4. For given two values of orness Ω1 and Ω2, 

if Ω1>Ω2, then  

when n is odd, wi(Ω1)>wi(Ω2) for i=1,…, 1
2

1 −+n  

      wi(Ω1)<wi(Ω2) for i= 1
2

1 ++n ,…,n and 

when n is even, wi(Ω1)>wi(Ω2) for i=1,…,
2

n  

    wi(Ω1)<wi(Ω2) for i= 1
2
+n ,…,n 

where wi(Ωj), j =1, 2 denote the ith LSOWA weights at 

the value of orness Ωj. 

Proof. 
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. For Ω1>Ω2, the sign of 

wi(Ω1)-wi(Ω2) is determined depending on the index 

number i as in the statements.                   ■ 

Let us denote Qk(Ω) as a cumulative LSOWA weight 

from i=1 to i=k when a value of orness is given as Ω. 

That is, 
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COROLLARY 2. For given two values of orness Ω1 and 

Ω2, if Ω1>Ω2, then Qk(Ω1)≥Qk(Ω2) for k=2,…,n where 
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 since Ω1>Ω2 

and 0<k≤n (equality holds when k=n).             ■ 

As was previously mentioned, let us consider a 

situation in which a decision-maker specifies his or her 

optimistic value for the aggregation in uncertain ways. 

If the value of orness is specified in the form of interval, 

then for Ω1>Ω2, the constraint in Equation 1b should be 

replaced by Inequality 9. 

1
1

2
)(

1

1
Ω≤∑ −

−
≤Ω
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n

i
i
win

n
         (9) 

If we solve the constrained optimization problem with 

an interval orness constraint, the optimal LSOWA 

weights will be determined while the value of orness is 

set at not Ω1 but Ω2 because the optimal objective value 

is minimized at less value of orness. Thus, rather than 

solving the mathematical program as it is, it seems 

reasonable to think that incomplete orness indicates 

incomplete weights ranging between the weights 

regarding Ω1 and Ω2 respectively. This consideration 

leads to the following Corollary 3. 

 

COROLLARY 3. When the value of orness is specified in 

the form of interval, interval LSOWA weights can be 

constructed in such a way that  

when n is odd, [w1(Ω2), w1(Ω1)],…, )](),([
1121

2

1

2

1 ΩΩ
−− ++ nn ww , 
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[1/n, 1/n], )](),([
2111
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1 ΩΩ
−+ ++ nn ww , [wn(Ω1), wn(Ω2)] and  

when n is even, [w1(Ω2), w1(Ω1)],…, )](),([
12

22

ΩΩ nn ww , 

)](),([
2111

22

ΩΩ
++ nn ww ,…, [wn(Ω1), wn(Ω2)]. 

Proof. It directly follows from the results in Theorem 4. 

■ 

It can be easily shown that the sum of lower bounds in 

interval LSOWA weights is less than one and the sum 

of upper bounds in interval LSOWA weights is greater 

than one. 

Example. Suppose that a decision-maker specifies his 

or her orness (i.e., degree of optimism) lie in [0.6, 0.7], 

then the LSOWA weights can also be specified in 

interval ones. For n=5 (odd case), interval LSOWA 

weights are determined by combining these two 

weights, 

[w1(0.6), w2(0.6), w3(0.6), w4(0.6), w5(0.6)]=[0.28, 0.24, 

0.2, 0.16, 0.12] and 

[w1(0.7), w2(0.7), w3(0.7), w4(0.7), w5(0.7)]=[0.36, 0.28, 

0.2, 0.12, 0.04]. 

For n=6 (even case), interval LSOWA weights are 

determined by combining these two weights, 

[w1(0.6), w2(0.6), w3(0.6), w4(0.6), w5(0.6), 

w6(0.6)]=[0.238, 0.210, 0.181, 0.152, 0.124, 0.095] and 

[w1(0.7), w2(0.7), w3(0.7), w4(0.7), w5(0.7), 

w6(0.7)]=[0.310, 0.252, 0.195, 0.138, 0.081, 0.024]. 

 

4. Concluding remarks 

 

In this article, we present an alternative weighting 

method, LSOWA for determining the OWA weights. 

The method is basically in line with the MEOWA 

weighting method in that it ties to obtain the OWA 

weights minimizing the variations from the equal 

weights while satisfying the prescribed value of ones. 

When a decision-maker specifies an uncertain interval 

value of orness, we can construct interval LSOWA 

weights. Further a method for prioritizing multiple 

alternatives evaluated by multiple criteria is presented 

when those interval LSOWA weights are provided.  
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