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Abstract

This paper considers a flow shop scheduling problem
where a different WIP (work-in-process) state has different
weight on the duration time. The objective is to minimize
the sum of the weighted WIP.

For the two machine flow shop case, the recognition
version is unary NP-Complete. The three simple and
intuitive heuristics HO, H1, and H2 are presented for the
problem. For each heuristic, we find an upper bound on
relative error which is tight in limit. For heuristic H2, we

show that H2 dominates the other two heuristics.

1. Introduction.

An important objective that has not received much attention
in the scheduling literature is the Work In Process (WIP)
cost associated with value that is added during the
production process. The value of the product and the WIP
cost increases as labor and material are added to a product.
Consequently, it may be possible to reduce the total WIP
costs if a factory can move WIP inventory to earlier stages
of manufacturing process.

Minimizing WIP costs is an important criterion for many
manufacturing facilities. Level of WIP stocks is often
considered as one of the measures for production efficiency
(Sipper and Shapira, 1989). While it is almost impossible to

operate production lines without any WIP stock, most

companies try to minimize WIP (Sipper and Shapira, 1989).

Some companies intentionally keep WIP inventory at work

centers for better utilization (Vollman et al., 1997) or

hedging against late delivery penalty, but for most of
companies, reducing unnecessary WIP inventory is an
important goal to achieve. For the role of WIP in serial
production lines, see Conway et al. (1988).

Any scheduling problem with the objective of minimizing
total completion time minimizes the average WIP inventory
during the entire manufacturing process of jobs. In this case,
the WIP cost of a job remains the same throughout the
manufacturing process.

Another problem which considers WIP costs as the
objective is the cyclic sequencing problem with the
minimum-wait objectives. The problem minimizes the
average WIP inventory of partially finished jobs subject to
the constraint that the jobs have to be produced at the
maximum throughput rate. A difference from the regular
scheduling problem with the objective of minimizing total
completion time is that the problem recognizes the WIP
cost only when jobs are not processed by a machine. In this
case, the WIP cost of a job also remains the same during
the entire manufacturing process. For surveys on the
problem, see Kamoun and Srikandarajah (1993) and
Matsuo (1990).

In this paper, we consider a new flow shop scheduling
problem where a different WIP state has a different weight
on the duration time. The value is added while a raw
material is processed through the flow shop. A major
difference from the other flow shop scheduling problems
which we describe earlier is that the WIP cost changes
(usually increases) as production process continues.

For this paper, we consider the two machine flow shop case.
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The problem we consider has some similarity with the two
machine flow shop problem with the objective of
minimizing total completion time. Actually, this well
known problem is a special case of the problem we
consider. The recognition version of the two machine flow
shop problem with the objective of minimizing total
completion time is known to be unary NP-Complete (Garey
et al. ,1979). Several studies are done and most of them are
focused on developing efficient algorithms (Aidri and Amit,
1984; Velde, 1992; Wang et al., 1996;Hoogeveen and
Kawaguchi, 1999;Croce et al., 1996, 2002; Lee and Wu,
2001).

In the next two sections, we introduce some notation and
describe the problem. Then, we present some preliminary
results. Then, we introduce three heuristics HO, H1, and H2
using a simple scheduling rule, and for each heuristic, we
find an upper bound on relative error which is tight in limit.
For heuristic H2, we show that H2 dominates the other two

heuristics.

2. Notation

The decision variables in our models are

o, = schedule of all jobs on machine i for i€ {l,2}

o =schedule of all jobs= (o,,0,)

Other notation that is used in this work includes

n = number of jobs

N =setofjobs= {,2,K ,n}

M, =machine i for ie{l,2}

p; =processing time of job j on machine 7 for
jeN and ie{l2}

C,(o;) =completion time of job j onmachine 7 in
schedule o for je N and i€ {l,2}

C,(0) = completion time of job j inschedule o for
jeN

§,(0;) =starttime of job j onmachine i in schedule

o for jeN and ie€{l,2}

T,;(o) =waittime of job j before it starts processing
on machine | in schedule j for je N

T,;(o) =waittime of job j before it starts processing
on machine 2 after job j completes on machine 1 in
schedule o for jeN

WIP,(c) =work in process cost for job j in schedule
o for jeN and

*® =

z value of optimal schedule.

We may omit o after 7);, T,

C‘ ;»and Wle when
there exists no confusion. The standard classification
scheme for scheduling problems (Graham et al., 1979) is

a, | a,|a,, where ¢, describes the machine structure,
a, gives the job characteristics or restrictive requirements,
and «, defines the objective function to be minimized.
We extend this scheme to provide for WIP costs by using
WIP, inthe «a, field. Following the standard scheduling
classification schedule of Graham et al. (1979), we refer to
the problem of minimizing the WIP cost in a two machine
flow shopas F2| D WIP, . All of the heuristic
procedures we develop use the following well known rule
to determine the order in which the jobs are processed.

SPT (Shortest Processing Time): When machine 1
becomes available, an unscheduled job with a shortest total

processing time is selected first for processing.

3. Description of Problem

We assume that all jobs are available at time zero. In a two

machine system, there are four different types of WIP

costs:

® Type 1: before a job is put into the first machine
(value of raw material)

® Type 2: ajob is being processed by machine 1 (value
of raw material + added components at machine 1)

® Type 3: after a job is processed by machine 1 but
before the job is put into machine 2 (value of raw

material + added components at machine 1 + labor and
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depreciation of machine 1)
® Type 4: ajob is being processed by machine 2 (value

of raw material + added components at machine 1

+labor and depreciation of machine 1 + added

components at machine 2)

We assign different weight (value) to each WIP
inventory. Let w, be weight for Type i inventory for
i =1,2,3,4 . Then, we have Remark 1.
Remark 1 For problem F2 Y WIP,

W, Sw, Swy; Sw,.

A schedule defines a job order for each machine and a
permutation schedule is a schedule in which every machine
has the same job order and no preemption is allowed. Let
T); be waiting time of job j before it starts processing
on machine 1 and 7); be waiting time before job j
starts processing on machine 2 for j =12,K ,n,
respectively. The completion time of job j is
C,=T,+p,;+T,; + p,;, where p, isprocessing
time of job j on machine i for i =1,2. While the
actual weight might vary based on the job, most of the jobs
on a flow line are similar. Consequently, one reasonable
model is that the value added from a given operation is
proportional to the time spent on the machine. Thus, the
WIP cost for job j is

WIP =wT; +w,p; +w, T, +wyp,;. (1)
Note that w,p,; and w,p,; are fixed regardless of job

sequence.

4. Preliminary Results for F2| > wiP,

We begin by reviewing the following results.

Theorem 1 (Yang, 2005) The recognition version of
problem F2Y] WIP, is NP-Complete in the strong
sense.

Lemma 1 (Yang, 2005) For problem F2 || Y  WIP;
there exists an optimal permutation schedule.

As aresult of Lemma 2, we only consider a

permutation schedule.

Lemma 2 (Yang, 2005) For problem F2 || Y  WIP;
some optimal schedule requires inserted idle time on
machine 1.

As aresult of Lemma 3, when we describe an optimal
schedule, we may need to specify a job order and start time
(or completion time) of each job. Having inserted idle time
is a crucial difference between problems F2|| > C, and
F2|1X WIP; . As aremark, for problem F'2 | ZCj ,
there exists at least one optimal permutation schedule
without any idle time on machine 1 (Conway et al., 1967).
Finally, we present the following lower bound which is
established by Yang (2005).

Lemma 3 (Yang, 2005) For problem F2 || Y WIP,,

>C,(0") %[Z (0= J)py, + ps,)} +mw, min{p, )

+2W42P2,‘ +(2w, _W1)zpu}'

= =l

5. Heuristic with No Wait Time

In this section, we introduce a heuristic and analyze the
worst case behavior of the heuristic. The heuristic is
originally based on the approximation algorithm for
problem F2| C, presented by Gonzalez and Sahni
(1978), and Yang (2005) modifies for F2 || Y WIP; .
The heuristic works as follows. Since w, < w;, , for each
job, we eliminate wait time before machine 2 as much as
possible. A new heuristic proceeds by reindexing the jobs
in order of nondecreasing p,, + p,; for j=12K .,n,
settling ties arbitrarily, and sequentially schedules jobs in
that orderin M, and M ,. While minimizing
completion time, jobs are delayed on machine 1 so that it
does not create any wait time before machine 2. This leads

to the set of completion times:
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C =pus Cy =py +Ppy»> and

Crj =max{Cy ;. +p;,Cods Coy =Gy + Py
for j=23K,n.

The new heuristic is different from the heuristic by
Gonzalez and Sahni (1978) because it inserts idle time on
machine 1 to eliminate wait time before machine 2. With
this assumption, our problem becomes similar to flow-shop

problem with no-wait time before machine 2.

Heuristic HO (Yang, 2005).
0. Reindex jobs so that p,. + p,, < p, ;. + p,;,, for
j=12K ,n-1.
1. Schedule job 1 first so that C|; = p,, and
Cor =Py + Py -
Schedule jobs 2,3,K ,n in their index order on M, and
M, suchthat max{C,, , +p,;,C,; } and
C,;=C,,+p,; for j=23K,n.
When there exist ties, break them arbitrarily.
2. From a completed schedule, calculate WIPj for

j=12K ,n.
Output ZFI WIP; and stop.

In Step 0, reindexing the jobs requires O(nlogn) time.
Since all the other operations require O(n) time, the time
requirement of H1 is O(nlogn) time.

The following theorem by Yang (2005) provides an upper
bound on the relative error which is tight in limit.
Theorem 2 (Yang, 2005) For problem F2 || Y WIP,,
2"/ 2% <28 (e + )., and this bound is tight in limit
where z""° is a solution value of HO where o and f3
denote the minimum and maximum processing time of all

operations.

6. Heuristic with No Inserted Idle Time

In this section, we introduce a heuristic and analyze the

worst case behavior of the heuristic. The heuristic is the

approximation algorithm for problem

F2| ZC‘/. presented by Gonzalez and Sahni (1978). We
apply the same heuristic to problem F2|| >’ WIP, , which
has a different objective function. Since the heuristic uses
SPT and does not allow any inserted idle time, it is typical
choice for operation managers who are interested in

maximizing utilization of machines.

6.1 Description

This approximation algorithm by Gonzalez and Sahni
(1978) proceeds by reindexing the jobs in order of
nondecreasing p,; + p,, for j=12,K ,n,settling ties
arbitrarily, and sequentially schedules jobs in that order in
M, and M, such that unnecessary idle time is avoided.

This leads to the set of completion times:

Ci=pus Cy =Py + Py, and
C,=Cutpy, Gy =maxiC,; ,C i+ p,,;,

for j=23K ,n

Note that this approximation algorithm runs in O(nlogn)
time and the resulting schedule is a permutation schedule
with no idle time on M| between the execution of the

jobs. For the sake of completeness, we formally describe

the heuristic.

Heuristic H1.
0. Reindex jobs so that p,; + p,; < py ;, + P,y for
j=L2K n-1.
1. Schedule job 1 first so that C,;, = p;; and
Cor =Py + Py -
Schedule jobs 2,3,K ,n in their index order on M, and
M, suchthat C, =C;, +p,; and
C,, =max{C, ; |,C ;}+p,; for j=23K  n
When there exist ties, break them arbitrarily.

2. From a completed schedule, calculate WIPj for

j=12K ,n.

Output Z’;:l WIP, and stop.



6.2 An Upper Bound on the Relative Error

In this section, we analyze heuristic H1 and find the worst
case bound on relative error. We assume throughout this
subsection that jobs are indexed so that

P+ Py S Pt Paja for j=12,K,n-1.Then,
we show that the bound is

[u/(u+v)+wv/{w,(u+v)}]/2 where

n—1 n—1 X
u= Z (n=)p,; . V=zj:l(n—j)p2j,andthe

bound is tight in limit. Note that the bound has the

minimum of 2 when w; = w;.

The following theorem proves the bound. For the following

theorem, let u = z’: (n=j)p,; and

v=>""(n=j)p,; -

Theorem 2 For problem F2|| ) WIP,,

2" 2% <[u M +v) +wyv {w, (u+v)}1/ 2, and this
bound is tight in limit where z™
Proof. Let o' be a schedule generated by heuristics H1.

Also, we let the value of the lower bound from Lemma 3 be

zL, Then,

L > (0= )y, + o) - MZM,
Jj=1
)

By construction of H1,
WIP(c"") = wypy, +w,p,, )
and

j-1

-l
WIP, (@)= w2 Py wpy WD Doy twypy; (4
P =l

for j=2,3,K ,n Bycombining (2)and (3), we have

S WIP (o) = wlz(n ey +W22Pu
J=1 J=

Q)
+Wsz(” ])sz +W4ZP2J

Jj=1

ZEsrs] 2006 EHESSS =3 =2

is a solution value of HI.

From (2) and (5),

H1 H1
z z
ST
z*¥ z
n n
- wiu +w,v + szjzlpu + W4Zj:1p2j ©
< - .
Wl (u + V) - Wl z‘jzl plj n n
5 W, Z,-:lplj * W4Z,-:1pzj
Now, we need to consider two cases. First, suppose that
u = v . From (6),
u n n
o Wit szjzlplj +W4Zj:lp2j
z . u+v
L — n
z w (u+v)+w, ZHPL/ .
2 Wy Z;:l Paj
A% n
Wi+ —— W, D Py
[u + v] z"‘l /
+ n
w (u+v)+w, ZH Dij
2
2u 2w,v
< = (@)
u+v wu+v)
Similarly, for the case where u <v,
u n
WU+ —— W, D Py
ZHI (u + V] ijl J
- =
n
z w(u+v)+w, ZHPL/
2
v zn z"
wiv+ "yt Wy 2 i Py tWa 2, Pay
+ n
w (u+v)+w, ZH Dij )
> +w, Y =1 P2j
2u 2w,y
< + - ®)

u+v wu+v) '

From (7) and (8), we prove the worst case bound.
Now, we show that the bound is tight in limit. Consider the
following instance. There are 2m jobs with processing
times p,, =1 and p,, =0 for j=12,K ,nand

p; =0 and p,; =1 for

Jj=m+1lm+2K 2m.Since p,; + p,; isequalfor
all jobs, any job sequence can be a result from the heuristic.
Suppose that &' = (1,2,K ,2m) . Then, the solution
value is

M= w Bm® —m) 2+ wy(m* —m)/ 2+ wym+ w,m
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An optimal schedule
o*=(m+1,m+2,K ,2m,,2,K ,m) and the solution
valueis z* = w,(m> —m) +w,m +w,m .

The relative error goes to 3/2+ w; /(2w,) for m — .

Note that u = Z':(n -Dp; = (3m* —m)/2 and

V:zr,l-:(”_j)l?zj =(m’-m)/2.As m—> o,

2u/(u+v) goesto3/2and 2v/(u+v) goesto 1/2.
Hence, the relative error bound goes to 3/2 + w; /(2w,)

for m —> o .[]

7. Heuristic with Inserted Idle Time and Wait

Time

In this section, we introduce the third heuristic which
dominates heuristics HO and H1. Throughout this section,

let }/:Lw3/w1J.Notethat y=1.

7.1 Description

The heuristic proceeds by reindexing the jobs in order of
nondecreasing p,; + p,, for j=12,K ,n,settling ties
arbitrarily, and sequentially schedules jobs in that order in
M, and M, such that unnecessary idle time is avoided.
Then, for jobs in positions from n—y+1 to n,the
heuristic delays the jobs on machine 1 so that they do not
create any wait time before machine 2. Throughout this
section, job [j] denotes the job that occupies the j th
positionin o ; C;; and S, are defined accordingly.
Suppose that S, [, ;1= Cp, 4 = A7 > 0. Then,
delaying job [n—y+k] by At decreases wait time of
the job before machine 2 by At for k€ {,2,K ,y}. But,
it also increases wait time before machine 1 for each of job
[n—y+k] and subsequent jobs by at most Af, and the
total increase of wait time is no greater than jyAf . Since
wy 2w, , delaying job [n—y+k] for ke{l,2,K,y}

does not increase solution value and may improve the

solution value.

Now, the heuristic checks whether job [n— ] canbe
delayed on machine 1 without delaying the following jobs.
Formally, the heuristic checks whether C,, ,<S,, ;-
If it does, then the heuristic also checks whether job

[7n—y] can be delayed without delaying the very next job.
This is possible if C), <S If it does, then delay

[n=7] Lin—y+1]

job [n—=y] by

min{S,;, 1 = Cy, 1,8, 07 — Gy} - Note that if job

[7n—y] can be delayed, then the solution value must be
decreased due to wy = w;.

Ifjob [n—y] isdelayed, then the heuristic needs to
check whether job [n—y —1] can be also delayed
without delaying the next job, which is job [n—y]. The
heuristic tries to repeat this process for jobs
[n—y—-1],[n—y—-2],K,2, [n—y—2] until there
exists no such delay any more.

For convenience, we call this process free delay.
Performing free delay means searching for free delays and
delaying associated jobs. Note that free delay is created
when job [j] for je N isdelayed on machine 1 and
jobs before job [j] can be delayed on machine 1 without
delaying following jobs so that it reduces the solution value.
Notice that an optimal schedule does not have any free
delay.

After performing initial free delay, the heuristic considers
job [2].1f Cy,; < Sy, then the heuristic considers job
[2] fordelayingby Sy, —Cypyy - Alternatively, if

Ci27 2 Sy, then the heuristic continues with the next job,
job [3]. Since there does not exist any free delay, delaying
job [2] delays jobs [3],[4],K ,[#]. Calculate changes
in the solution value and see whether the solution value
improves. Delay job [2] only if we can improve the
solution value. Otherwise, go back to the status right before
the heuristic tries to delay job [2].

The heuristic repeats this process for job [3]. Note that for

job [3], the heuristic needs to include possible decrease in
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solution value due to free delay which is caused by
delaying job [3]. The heuristic repeats this process for all

remaining jobs until job [7 —y]. We now formally

describe the heuristic.

Heuristic H2.
0. Reindex jobs so that p,; + p,; < py ;4 + P,y for
j=12K ,n-1.
Set y = Lw3 /wlj
1. Schedule job 1 first so that C|;, = p,, and
Cor =Py + Py -
2.If y>2n—1,thenset y =n—1 and go to Step 4.
3. Schedule jobs 2,3,K ,7n in their index order on M,
and M, suchthat C,, =C, ,+p,; and
Gy =max{C, ; ,,C,;} + p,;.
When there exist ties, break them arbitrarily.
4. Schedule jobs n—y +1,n—y+2,K ,n in their index
orderon M, and M, such that
C, =max{C,;  +p,;,C, ,,} and C); =C\; + p,;.
When there exist ties, break them arbitrarily.
5. Perform free delay for jobs [2],[3].K ,[n—y +1].
6.Set k=2 and o = current schedule.
7.1f Sy — Ciyg <0, then go to Step 12.
8. Delay job [k] onmachine I by S,;;—Cy,;-
Delay jobs k+1,k+2,K ,n on machine 1 by
Sauy = Cig -
Set Cyppy = max{Cy,), oy} + Pay for
A=k+1Lk+2K ,n.
9. Perform free delay for jobs 2,3,K ,k —1 ifnecessary.

10. Set o' to be this new schedule.

11 If Z',I-:l WIP (o) > z;zl WIP(c'), then set o =0".

12.8et k=k+1.
If k=n—y+1,then go to Step 13. Otherwise, go to

Step 7.

13. Output Z'/’.zl WIP, and stop.

In Step 0, reindexing the jobs requires O(nlogn)
time. All the other operations require O(n) time. Steps 7
to 12 can be repeated up to O(n) time, the time

requirement of H2 is O(n”) time.

7.2 An Upper Bound on the Relative Error

Since H2 starts with the result of Heuristic HO and only
improves the schedule, H2 dominates HO. Hence, we have
the following remark.

Remark 2 For problem F2 || ZWIPJ , heuristic H2
dominates heuristic H1.

Next, the following theorem shows that H2 dominates HO.
Theorem 3 For problem F2| ) WIP, , heuristic H2
dominates heuristic HO.

Proof. Let o' and o* be schedules generated by
heuristics HO and H2, respectively. By construction of HO
and H2, Ci(O'IHO) > C‘/-(O'le) and

C, (0> C; (62?) forall je N .Recall that job
sequence is the same for ¢/’ and ¢"* so that jobs are
sequenced in an increasing order of their processing times.
Notice that for ”° and & "?, there does not exist any
free delay. Consider a job such that

C, CARE C‘/.(0'1H2) for je N.Let k be the first
such a job. Then, it must be that S, (o2%) > C, (c,"?).
We delay job k in &”? by S,(c4?)-C,(5{*) on
machine 1 and similarly, we delay jobs k+ 1,k +2,K ,n
by S,(02*)~C,(c{"*) onmachine 1 and delay the
same jobs accordingly on machine 2. Then,
C.(0!") - C,(o1"™).

By construction of H2, this delay increases the solution
value. Also, note that since o '"* for jobs 1,2,K ,k is
the same as o”°, there is no free delay for jobs

23K, k-1.

We repeat this process for all remaining jobs such that

C, CARE C‘/-(O'le) for j e N .During the entire
process, the solution value increases or remains the same.

Therefore, H2 dominates HO. [
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The following corollary establishes an upper bound on the
relative error which is tight in limit.

Corollary 1 For problem F2| Y. WIP,,

2"/ 2% <28 (a + ). and this bound is tight in limit

H2 . .
where z is a solution value of HI.

Proof. The result follows from Theorems 1 and 3. [J

7. Summary and Discussions

We have explored a flow-shop scheduling problem where a
different WIP (work-in-process) state has different weight
on the duration time. The objective is to minimize the sum
of the weighted WIP. For the two machine flow shop case,
the three simple and intuitive heuristics HO, H1, and H2 are
presented for the problem. For each heuristic, we find an
upper bound on relative error which is tight in limit. For
heuristic H2, we show that H2 dominates the other two
heuristics.

For future research, we want to develop more heuristics and
find some special cases where heuristics can find optimal
schedules for the problem. We also want to explore more
general cases of the problem such as different weights on
WIP costs for different jobs. This makes the problem harder,

but it is more realistic.
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