
Abstract

This paper considers the multicommodity flow

problem and the integer multicommodity flow

problem on cycle graphs. We present two linear time

algorithms for solving each of the two problems.

1. Introduction

We are given an undirected graph G=(V,E) and

a set of source-sink pairs (si,ti), i=1,...,|K|. Let

K={1,...,|K|} be the index set of source-sink

pairs. For each edge e E, a nonnegative∈
capacity c(e) is given and for each source-sink

pair (si,ti), i K, a nonnegative demand d(i) is∈
given. A multicommodity flow is a function f

on |K| where fi is a flow from si to ti for each

i K. Given c and d, we will say a∈
multicommodity flow f is feasible, if the value

of fi is d(i) for each i K and∈ Σ i∈Kf i(e)≤c(e)

for each e E. Then the multicommodity flow∈
problem (MFP) is to find a feasible

multicommodity flow. If we require an integer

flow, the problem is called the integer

multicommodity flow problem (IMFP). In the

IMFP, we assume that the capacities and

demands are all integers. Throughout, we use

the terms multicommodity flow when no

integrality is required. For more details on the

definition of multicommodity flow problems,

refer to Schrijver (2003).

The MFP and the IMFP are important from

both the theoretical and practical viewpoints.

Both problems are well known topics in

combinatorial optimization and have good

applications such as routing problems in

telecommunication networks and the design of

VLSI circuits. (See Schrijver (2003) and Suzuki

et al. (1992)). In this paper, we consider the

1) This work was supported by the Korea Research

Foundation Grant funded by the Korean Government

(MOEHRD) (KRF-2005-041-B00167).

MFP and the IMFP on cycle graphs. Suzuki et

al. (1992) have developed two algorithms, one

for testing the feasibility of the multicommodity

problem on cycle graphs and the other for

finding a feasible flow in a feasible problem.

Both algorithms run in linear time. It is known

that if the capacities and demands are all

integers and a feasible multicommodity flow

exists, then a half-integer multicommodity flow

always exists on cycle graphs (Okamura and

Seymour (1981)). For the IMFP on cycles,

Frank et al. (1992) have presented a linear time

algorithm when all demands are equal to 1. A

direct application of their algorithm results in a

pseudopolynomial algorithm for a general

instance of the IMFP on cycle graphs. From

now on, if we do not specify a given graph,

we assume it as a cycle graph.

Our objective of this study is to develop two

linear time algorithms, one for solving the MFP

and the other for solving the IMFP (with

arbitrary demand). The paper is organized as

follows. Section 2 introduces the notation and

definitions. We present an algorithm that solves

the MFP in Section 3 and an algorithm for the

IMFP in Section 4. This paper is the conference

version of the full paper in Myung (2006).

2. Notation and definitions

We mean a cycle graph as an undirected graph

G=(V,E) with a node set V={1,2,...,n} and an

edge set E={(1,2),(2,3),...,(n-1,n),(n,1)}. We use

ei to denote an edge (i,i+1) for i=1,...,n, where

indices are counted modulo n. We order the

edges such that ei<ej if i<j. As previously

defined, K is the index set of source-sink pairs.

We assume that si<ti for each i K. The∈
demand between si and ti can be routed in

either of the two directions, clockwise and

counterclockwise. We say that a flow is routed

in the clockwise (counterclockwise) direction if a

flow passes through the node sequence

Multicommodity Flows in Cycle Graphs1)

Young-Soo Myung

Department of Business Administration,

Dankook University, Cheonan, myung@dankook.ac.kr

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

{si,si+1,...,ti-1,ti} ({si,si-1, ..., 1,n,...,ti+1,ti}). For

ease of description, we assume that nodes

1,2,...,n appear clockwise on G in this order.

We also assume that s1 s≤ 2 ... s≤ ≤ |K| and that

each node is contained at least one source-sink

pair, i.e., 2|K| n. Notice that we can make a≥
given graph meet the condition of the second

assumption by simply removing the nodes not

contained in any source-sink pair.

For each (sk,tk), k K, let∈ E+k(E
-
k) denote the

set of edges contained in the clockwise

(counterclockwise) direction path from sk to tk.

Note that edge en is contained in E-k for all k

K. As a flow between a source-sink pair can∈
be routed in only two directions, one variable is

enough to represent the flow. For each k K,∈
let's define variable x(k) that denotes the amount

of the total demand between sk and tk routed in

the clockwise direction. Therefore, d(k)-x(k) is

the amount of the flow routed in the

counterclockwise direction. Let

X={x∈R |K||0≤x(k)≤d(k)∀k∈K}, and for a

given multicommodity flow x X and e E, let∈ ∈

g(x,e)=∑{x(k)|e∈E+k }+∑{d(k)-x(k)|e∈E
-
k}

Then g(x,e) denotes the sum of the flows routed

through edge e. Therefore, x X is a feasible∈
multicommodity flow if g(x,e) c(e) for each e≤

E.∈
Any pair of distinct edges e and f constitute

a cut and for each cut {e,f}, we define D(e,f)

as

D(e,f)=∑{d(k):either e∈E +k ,f∈E
-
k, or e∈E

-
k,f∈E

+
k }.

Therefore, D(e,f) can be interpreted as the total

demand across the cut {e,f}. If a

multicommodity flow x X is given, D(e,f) can∈
be expressed with respect to x. Note that a flow

between a source-sink pair whose demand is

across the cut, is routed through either e or f

and a flow between the remaining pairs, is

routed through both e and f, or neither of the

edges. Therefore, for a given x X, D(e,f) can∈
be expressed as follows.

D(e,f)= g(x ,e)+g(x ,f)-2∑ {x(k)|e,f∈E +k }
-2∑ {d(k)-x(k)|e,f∈E -k}. (1)

From (1), we can know the following facts.

Remark 1 (i) For any cut {e,f}, g(x,e)+g(x,f)≥
D(e,f).

(ii) D(e,f)=g(x,e)+g(x,f) if and only if e and f

satisfy the following two conditions:

(C1) x(k)=0 for each k K such that e,f∈ ∈ E+k .
(C2) x(k)=d(k) for each k K such that e,f∈ ∈

E-k .

The statement (i) of Remark 1 indicates that

every feasible multicommodity flow x X∈
satisfies the following cut condition.

c(e)+c(f) D(e,f), for each e,f E. (2)≥ ∈

Moreover, as a direct consequence of Okamura

and Seymour's theorem (Okamura and Seymour

(1981)), we know that in a cycle graph, the

MFP has a solution if and only if the graph

satisfies the cut condition.

3. Algorithm for the MFP

In this section, we present an algorithm of

solving the MFP. For the MFP, Suzuki et al.

(1992) have developed two linear time

algorithms, one for testing the feasibility of the

MFP and the other for finding a feasible flow

in a feasible problem. Without a complex data

structure, the first algorithm runs in O(n|K|) time

and the latter in O(n|K|
2
) time. Using Gabow

and Tarjan's data structure (Gabow and Tarjan

(1985)), both algorithms can be implemented in

O(|K|) time.

Here, we develop an algorithm that finds a

feasible solution of the MFP, or verifies that the

problem has no solution. Our algorithm is the

modification of Myung, Kim, and Tcha's

algorithm of solving the ring loading problem

(RLP) on an undirected ring (cycle) network in

Myung et al. (1997). In the RLP, each edge is

required to have the same capacity and the

objective is to find the smallest edge capacity

that enables the existence of a feasible

multicommodity flow. Myung et al.'s algorithm

is very simple and can be implemented in linear

time. Our algorithm is very similar to theirs and

has the same computational complexity. In order

to run in O(|K|) time, our algorithm also rely

on Gabow and Tarjan's data structure but

without this, our algorithm runs in O(n
2
) time.

The key feature of our algorithm is that it does

not have to compute c(e)+c(f)-D(e,f) for each

cut, that gives major computational burden to

Suzuki et al.'s algorithm.

To present our algorithm, we define

m(x,e)=g(x,e)-c(e) and mmax(x)=max{e E}∈ m(x,e)

for a given x X. Notice that a flow x X is a∈ ∈
feasible flow if mmax(x) 0. Our algorithm≤

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

finds a feasible flow for the MFP, if any,

otherwise verifies that no such solution exists.

Our algorithm initially set x=(x(1),x(2),...,x(|K|))=

(d(1),d(2),...,d(|K|)), which means that all

demands are routed in the clockwise direction.

Then, for each source-sink pairs k K, the∈
algorithm tries to reduce mmax(x) by rerouting

all or a part of d(k) in the counter-clockwise

direction. Note that if max{m(x,e)|e∈E+k }>

max{m(x,e)|e∈ E-k}, rerouting d(k) in the

counterclockwise direction decreases mmax(x).

The rerouting of demand k is done until all the

demand is rerouted or the resulting flow satisfies

max{m(x,e)|e∈E+k }=max{m(x,e)|e∈ E-k}. We

don't have to continue iteration, after we find a

feasible flow, but we set our algorithm as one

doing all of |K| iterations. This is simply for

expositional convenience. Under this setting, the

algorithm finds a flow x X with minimum∈
mmax(x). Our algorithm is formally described as

follows.

Algorithm FLOW

begin

x (d(1),d(2),...,d(|K|)).←
for each source-sink pairs (sk,tk), k=1,2,...,|K|,do

begin

m(E+k) max{m(x,e)|e← ∈E+k }

m(E-k) max{m(x,e)|e← ∈ E-k}

if m(E+k)>m(E-k) then

min{(m(δ← E+k)-m(E-k))/2,d(k)}

else 0δ←
x(k) d(k)-δ←

end

end

Now we show the correctness of the

algorithm FLOW. It is straightforward that if

mmax(x) 0 for the returned solution x, it is a≤
feasible flow. The remaining thing is to show

that if mmax(x)>0, the given problem has no

feasible flow. Let E(x)={e E|m(x,e)=mmax(x)}∈
for a given x X. E(x) means the set of edges∈
whose flow exceeds the capacity most with

respect to x. We will call the edges in E(x) the

most violated edges with respect to x. Let

x
0
={d(1),...,d(|K|)} and x

k
denote the solution

obtained after the rerouting step is performed for

k K. For example, x∈
|K|

is the solution that the

algorithm finally produces. We will show that if

mmax(x
|K|

)>0, a given graph does not satisfy the

cut condition, (2), which means that a given

graph has no feasible flow. We formally state it.

Theorem 2 If mmax(x
|K|

)>0, there always exist a

pair of most violated edges that satisfy (C1) and

(C2) in Remark 1, i.e., a given graph does not

satisfy the cut condition.

Proof. See Myung (2006).

The algorithm FLOW is a modification of

Myung, Kim, and Tcha's algorithm that appeared

in Myung et al. (1997) to solve the ring loading

problem on undirected cycle graphs. The

computational complexity of the algorithm

FLOW is the computation of m(E+k) and m(E-k)

for each k K. It is not difficult to construct an∈
algorithm that carries out each rerouting step in

O(n) time and thus the whole steps in O(n|K|)

time. Moreover, Myung and Kim (2004) have

shown that the whole rerouting steps can be

done in O(n
2
) time and Wang (2005) have

developed an improved algorithm to complete

the whole steps in O(|K|) time using Gabow and

Tarjan's data structure. Therefore, using there

algorithms we can achieve the same time bound

for FLOW.

4. Algorithm for the IMFP

In this section, we present an algorithm of

solving the IMFP. This algorithm is similar to

the one presented in Myung (2001) for solving

an integer version of the ring loading problem

on undirected cycle graphs. In the first phase,

our algorithm implements the algorithm FLOW.

Notice that if a graph does not have a feasible

(fractional) multicommodity flow, it never has

an integer one, but not vice versa. The second

phase of our algorithm starts with a feasible

solution of the MFP produced by the algorithm

FLOW. If the solution is an integer one, we are

done. When the solution is a fractional one, our

algorithm checks whether a given graph has an

integer multicommodity flow, and finds one, if

any.

Suppose that x
|K|

, produced by the algorithm

FLOW, is a fractional solution. Let K
f
={k1,...,kf}

be the index set of the source-sink pairs in K

for which x
|K|

(k) has fractional value. As K
f
⊆

Kb, s k 1<s k 2<⋯<s k f<t k 1<⋯<t k f . Let's partition

E into the following 2f+1 subsets as follows:

L0= {e i|1≤i<s k1} , L1= {e i|s k1≤i<s k2} , ...,

L f= {e i|s k f≤i< t k 1} , L 2f= {e i|t k f≤ i≤n } . Let

es=min E(x
0
), emin=min E(x

|K|
) and emax=max

E(x
|K|

). In other words, es is the edge having the

smallest index among the most violated edges

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

with respect to the initial solution and emin(emax)

is the edge having the smallest (largest) index

among the most violated edges with respect to

x
|K|

. Note that es remains as a maximum load

edge with respect to x
k

for each k=1,2,...,|K|,

but may or may not be emin.

If we consider the rerouting procedure of the

algorithm FLOW, it is not difficult to know that

the fractional part of x
|K|

(k) for each k K∈
f

is

equal to 0.5. So, if we reroute each demand k

K∈
f

by 0.5 in either a clockwise or a

counterclockwise direction, we can obtain an

integer flow. We define the two different

rerouting methods, Method A and Method B.

Both methods reroute each demand k K∈
f

by

the amount of 0.5, in the increasing order of k

K∈
f

and in either of the two directions

alternatingly, one after another. The difference of

the two methods is that Method A starts

iteration by rerouting the first flow in the

clockwise direction while Method B starts

rerouting in the counterclockwise direction. Let

x* be the integer solution obtained by rerouting

the fractional flows of x
|K|

using either Method

A or Method B. Then the following

observations are useful to develop an algorithm

of solving the IMFP.

Remark 4 (a) If |Kf| is odd, g(x
|K|

,e), e E has∈
fractional value whose fractional part is 0.5 and

if |Kf| is even, g(x
|K|

,e), e E has integer value.∈

(b) If |Kf| is odd and x* is the integer solution

obtained by rerouting x
|K|

using either Method A

or Method B, then for each e E,∈

g(x
|K|

,e)-0.5 g(x*,e) g(x≤ ≤ |K|
,e)+0.5.

(c) If |Kf| is even and x* is the result of

Method A,

g(х *,e)=

ꀊ

ꀖ
ꀈ
︳︳︳
︳︳︳

g(х |K|,e)+1, e∈L 1∪L 3∪⋯∪L f-1,
g(х |K|,e), e∈L 0∪L 2∪⋯∪L f∪⋯∪L 2f,
g(х |K|,e)-1, e∈L f+1∪L f+3∪⋯∪L 2f-1.

(d) If |Kf| is even and x* is the result of

Method B,

g(х *,e)=

ꀊ

ꀖ
ꀈ
︳︳︳
︳︳︳

g(х |K|,e)+1, e∈L f+1∪L f+3∪⋯∪L 2f-1,
g(х |K|,e), e∈L 0∪L 2∪⋯∪L f∪⋯∪L 2f,
g(х |K|,e)-1, e∈L 1∪L 3∪⋯∪L f-1.

Now we present an algorithm that finds a

feasible integer flow, or verifies that no such

solution exists.

Algorithm INTEGER

(Step 1) Implement the algorithm FLOW. If

mmax(x
|K|

)>0, then the IMFP has no solution. If

mmax(x
|K|

) 0 and K≤
f
= , x∅ |K|

is a feasible

solution. If mmax(x
|K|

) 0 and K≤
f

, go to≠∅
Step 2.

(Step 2) If either |K
f
| is odd or mmax(x

|K|
}) -1,≤

reroute x
|K|

using Method A. Otherwise, go to

Step 3.

(Step 3) If there exists no most violated edge e

such that e<es, then reroute x
|K|

using Method

A. Otherwise, go to Step 4.

(Step 4) Depending on the situations, do the

following.

(4-1) If every most violated edge e such that

e<es, exists only in the even indexed sets, i.e.,

e L∈ 0 L∪ 2∪⋯ L∪ f, then reroute x
|K|

using

Method A.

(4-2) If every most violated edge e with e<es,

exists only in the odd indexed sets, i.e., e L∈ 1

L∪ 3∪⋯ L∪ f-1, then reroute x
|K|

using Method

B. Select k K such that e∈ s, emax∈E+k and

x
|K|

(k)>0. If such k exists, reroute one unit of

demand k in the counterclockwise direction. If

no such k exists, then the IMFP has no

solution.

(4-3)} If there exist a pair of most violated

edges {e,f} such that e,f<es and that e belongs

to the even indexed sets and f belongs to the

odd indexed sets, then the IMFP has no

solution.

Theorem 5 The algorithm INTEGER correctly

solves the IMFP.

Proof. See Myung (2006).

As Myung (2001) and Wang (2005) have

explained, the computational complexity of the

algorithm INTEGER is not more than the

algorithm FLOW. Therefore, INTEGER can be

implemented in linear time.

References

A. Frank, T. Nishizeki, N.Saito, H. Suzuki and

E. Tardos (1992), Algorithms for routing

around a rectangle, Discrete Applied

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

Mathematics 40, 363-378.

H. N. Gabow and R. E. Tarjan (1985), A linear

time algorithms for a special case of disjoint

set union, J. Comput. System Sci. 30,

209-221.

Y.-S. Myung, H.-G. Kim and D.-W. Tcha

(1997), Optimal load balancing on SONET

bidirectional rings, Operations Research 45,

148-152.

Y.-S. Myung (2001), An efficient algorithm for

the ring loading problem with integer demand

splitting, SIAM J. Discrete Mathematics 14,

291-298.

Y.-S. Myung and H.-G. Kim (2004), On the

ring loading problem with demand splitting,

Operations Research Letters 32, 167-173.

Y.-S. Myung (2006), Multicommodity Flows in

Cycle Graphs, To appear in Discrete Applied

Mathematics.

H. Okamura and P. D. Seymour (1981),

Multicommodity flows in planar graphs,

Journal of Combinatorial Theory Series B 31,

75-81.

A. Schrijver, P. Seymour and P. Winkler (1998),

The ring loading problem, SIAM J. Discrete

Math., 11, 1-14.

A. Schrijver (2003), Combinatorial Optimization,

Springer, Berlin.

H. Suzuki, A. Ishiguro, and T. Nishizeki (1992),

Variable-priority queue and doghnut routing,

Journal of Algorithms 13, 606-635.

B.-F. Wang (2005), Linear time algorithm for

the ring loading problem with demand

splitting, Journal of Algorithms 54, 45-57.

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

	MAIN

