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Abstract 

 

We consider dynamic lot-sizing model with production 

time windows where each of n demands has earliest due 

date and latest due date and it must be satisfied during the 

given time window. For the case of nonspeculative cost 

structure, an O(nlog n) time procedure is developed and it 

is shown to run in O(n) when demands come in the order of 

latest due dates. 

 

 

 

1. Introduction  
 

As the relationship between customers and suppliers is 

getting closer, it is not unusual that the supply contract is 

established based on interval of periods during which total 

agreed quantity should be delivered. To deal with this 

situation, lot-sizing models with time windows have been 

studied. In these models, we need to schedule in T planning 

horizon the demands i, i = 1, 2, …, n, each having time 

window specified by earliest due date (EDD) and latest due 

date (LDD) between which it be satisfied. The application 

of the model with time windows can also be found in third 

party logistics and vendor managed inventory practices 

(Lee et al., 2001; Jaruphongsa et al. 2004s). There are two 

kinds of time windows: In the production time window case, 

each demand must be produced during its time window. In 

the other case of delivery time window, the constraint is 

relaxed that it is allowable to have a demand fulfilled out of 

its time window but with penalty of inventory holding or 

backlogging costs.  

 

In the past production systems, being relied highly on 

forecasting, demands were aggregated by periods. That is, 

each demand’s due date was given by single period. For 

this situation, Wagner and Whitin (1958) introduced the 

classical dynamic lot-sizing model to generate production 

schedules. Since then, there has been enormous study on 

this subject with various cost structures: in particular, 

nonspeculative costs, fixed plus linear costs, and concave 

costs (Aggarwal and Park, 1993; Wolsey, 1995; Brahimi et 

al., 2006). We note that nonspeculative cost is a special 

case of fixed plus linear cost where the unit production cost 

plus unit inventory cost of the current period is no less than 

that of the previous period. The consideration of (delivery) 

time windows in dynamic lot-sizing was first started by Lee 

et al. (2001) and then consideration of production time 

window has been followed by Dauzère-Pérès and Brahimi 

(2005). The original dynamic lot-sizing model with 

production time windows allows inventory: if we have 

production for a demand during its time window, the 

amount replenished is carried over to dispatch to customers 

in its last due date. However, as shown in Wolsey (2005), 

this model is equivalent to the revised model unallowing 

inventory. In the revised one, it is assumed that once a 

production occurs in a period, the produced amount is 

delivered just in the same period. Hence, this model can be 

thought of as a special case of the model with delivery time 

windows where inventory and backlogging penalty costs 

are set to infinite. In this paper, we will focus on the revised 

model by Wolsey (2005) and develop polynomial time 

optimal algorithms for the case. 

 

The classical dynamic lot-sizing model with fixed plus 

linear cost structure can be solved in O(T2) using ordinary 

dynamic programming. To speed up such type of dynamic 

programming problems, three independent works of 

Aggarwal and Park (1993), Federgruen and Tzur (1991), 

Wagelmans et al. (1992) came out: it has been shown that 

the classical dynamic lot-sizing models with nonspeculative 

costs, fixed plus linear costs can be solved in time O(T) and 

O(Tlog T), respectively. Furthermore, in Van Hoesel et al. 

(1994), they generalized the approaches in Federgruen and 

Tzur (1991), Wagelmans et al. (1992) using geometric 

techniques. In the case of delivery time windows with 

nonspeculative costs, Lee et al. (2001) provided O(T2) and 

O(T3) procedures for the case of backlogging unallowed 

and the other case of backlogging allowed, respectively. 

Recently, for the same model with backlogging, Hwang 

(2005) proposed a more efficient procedure with O(max{T2, 

nT }). To deal with a more general case of the fixed plus 

linear cost structure, Hwang and Jaruphongsa (2006) 

developed an O(nT3) algorithm. 
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For the model with production time windows, Dauzère-

Pérès and Brahimi (2005) presented an O(T2) algorithm for 

nonspeculative costs and pseudopolynomial algorithm for 

the fixed plus linear cost structure. For this model with 

fixed plus linear cost structure, we can employ the 

algorithm of Hwang and Jaruphongsa (2006). For the 

concave cost structure, Veinott (1963) and Zangwill (1996) 

provided optimal algorithms in the classical dynamic lot-

sizing model. However, until now on, no optimal algorithm 

is developed for the most general concave cost structure. 

For a special case that each time window does not overlay 

other windows, Hwang and Jaruphongsa (2004) provided 

an optimal algorithm.  

 

In this paper, we consider dynamic lot-sizing model with 

production time windows. For the case when each period 

exhibits nonspeculative cost, an algorithm with complexity 

O(nlog n) is devised. As shown later, when demands come 

in sorted order of LDD, it is proven to operate in O(n).  

 

In the next section, our model will be formally defined and 

known optimality properties be reviewed. The O(nlog n) 

optimal procedure for nonspeculative costs is presented in 

Section 3. In the final section, we conclude this paper. 

 

 

 

2. The Model and Basic Optimality Properties 
 

We first introduce basic notations: 

Parameters 

� di : the required quantity for demand i for i = 1, …, n. 

� [Ei, Li] : the time window of demand i for i = 1, …, n 

where demand i’s EDD and LDD are denoted by Ei and 

Li, respectively.  

� pt : the production function in period t. When the 

function is of fixed and linear cost structure, it is written 

as Kt + pt⋅x where Kt is the setup cost and pt is the unit 

production cost in period t. Under the nonspeculative 

costs, it holds that pt ≥ pt+1. 

 

 

Decision variables 

� yit : the amount dispatched in period t for demand i for i 

= 1, …, n and t = 1, …, T. 

� xt : the amount replenished in period t for t = 1, …, T. 

 

The mathematical formulation of the problem is given by: 
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Let’s consider one of the most basic properties of the model 

with time windows. Though the following property on 

nonsplitting principle is proved for the delivery time 

window model with nonspeculative cost structure (2001), it 

is still applicable to our model. 

 

Property 1: (Nonsplitting Principle) There is an optimal 

solution such that yit = di for some t ∈ [Ei, Li] for i =1, …, n. 

 

This property implies that each demand can be satisfied by 

single dispatch. The dispatch period of demand i is denoted 

by u(i) ∈ [Ei, Li]. Then, the following property (Wagner 

and Whitin, 1958; Zangwill, 1966) ensures that we can 

have an optimal solution with each demand being satisfied 

by a single replenishment. 

 

Property 2: (Planning Horizon Theorem) There is an 

optimal solution such that between any two consecutive 

production periods τ1 and τ2, the replenishment in period τ1 
is used to cover the requirements r(τ1), …, r(τ2−1), where 

r(t) = ∑1≤ i ≤ n:u(i) =t di for t = 1, …, T. 

 

Note that for each demand i, it has the same dispatch and 

replenishment period u(i).  
 

 
3. An Optimal Procedure with O(nlog n) 
 

In nonspeculative cost structure, the production function 

pt(x) can be represented in the form of Kt + pt⋅x where pt−1 ≥ 

pt for all t = 2, 3, …, T. By the constraint of production time 

window that each demand must be replenished within its 

time window, we know that any demand with EDD > t is 

satisfied later than t. Furthermore, any demand with LDD < 

t is replenished before t. Then the final question is about the 

demands crossing the period t? For these demands, we have 

the following property derived by Lee et al. (2001) 

 

Property 3: Suppose that pt−1 ≥ pt for all t = 2, 3, …, T. 

Then, in an optimal solution, if we have a production in 

period t, then all the demands with their LDD ≥ t are 

replenished at or after the period t. 
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Before describing the optimal solution procedure, we first 

present necessary notations, which make it possible to 

arrange and group demands by EDD and LDD. 

 

� α(i) : the sorted list of demands in nondecreasing order 

of EDD so that Eα(i) ≤ Eα(i+1) for i = 1, 2, …, n −1.  

� ( )tα : the largest index i in the list α such that its 

corresponding demand α(i) has EDD equal to t, i.e., Eα(i) 
= t for t = 1, 2, …, T. If no such ( )tα  exists, we let 

( )tα = ( 1)tα − , where (0)α = 0. Then all the demands 

with EDD of t are the ones α(i) for ( 1)tα − < i ≤ ( )tα . 

� β(i) : the sorted list of demands in nondecreasing order 

of LDD so that Lβ(i) ≤ Lβ(i+1) for i = 1, 2, …, n −1.  

� ( )tβ : the largest index i in the list β such that its 

corresponding demand β(i) has LDD equal to t, i.e., Lβ(i) 
= t for t = 1, 2, …, T. If no such ( )tβ  exists, we let 

( )tβ = ( 1)tβ − , where (0)β  = 0. Then all the demands 

with LDD of t are the ones β(i), for ( 1)tβ − < i ≤ ( )tβ . 

 

Note that both the lists α(i) and β(i) can be computed in 

O(nlog n). Also, we can have ( )tα  and ( )tβ  for t = 1, 2, 

…, T in O(n+T) using the lists α(i) and β(i), respectively. 

 

We need to define some further notations for intervals [λ, γ], 

1 ≤ λ < γ ≤ T.  

 

� D(λ, γ): the set of demands j whose LDD is between λ 

and γ, i.e., λ ≤ Lj < γ. Then, we can denote by D(1, γ) all 

the demands whose LDD is strictly less than γ. 

� C(λ, γ): the set of demands j crossing λ, whose LDD is 

between λ and γ, and EDD is no later than λ, i.e., Ej ≤ λ 

≤ Lj < γ. 

 

We let a(γ) be the demand with the largest EDD among the 

demands in D(1, γ). Ties are broken by choosing the 

demand with the smallest LDD among such demands. Also 

let b(γ) be the demand with the largest LDD among the 

demands in D(1, γ). Then, it is easy to see that the last 

production before γ, if it exists, occurs during the periods 

Ea(γ), Ea(γ)+1, …, Lb(γ). Then, we need to know how to 

obtain a(γ) and b(γ). Let a(0) = b(0) = 0 and suppose we are 

given a(γ−1) and b(γ−1). Then the demands a(γ) and b(γ) 

can be found as follows: If no demand exists with LDD 

equal to γ−1, then by definition we have that a(γ) = a(γ−1) 

and b(γ) = b(γ−1). Next consider the other case that demand 

exists with LDD equal to γ−1 and let demand i be of the 

smallest EDD among them. The demand i can be found by 

screening those demands β(j), for ( 2)β γ − < j ≤ ( 1)β γ − . 

We note that the demand i is just b(γ). Next, for a(γ), if Ei ≤ 

Ea(γ), then we have a(γ) = a(γ−1). Otherwise, we have a(γ) = 

i. Repeating in this manner, we can find all the a(1), a(2), 

…, a(T+1) and b(1), b(2), …, b(T+1) just in time O(n). 

  

We let dλ,γ be the total sum of demands in the set of D(λ, γ). 

Then, given d1,γ, the cumulative sum of d1,γ+1 can be found 

by the following recursion: 
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Hence, we can see that all the d1,γ for 1 < γ ≤ T+1 can be 

computed in time O(n) by sweeping once the list β. 

Moreover, dλ,γ for the set D(λ, γ) is immediately calculated 

using the following simple formula: 

 

dλ,γ = d1,γ − d1,λ. 

 

By this time, we have developed necessary notations and 

now we would like to provide an optimal procedure. Let 

f(γ) be the optimum cost for producing demands whose 

LDDs are strictly less than γ. When the last production 

occurs in period λ during the periods 1, 2, …, γ−1, the 

demands in C(λ, γ) are produced at or after the period λ by 

Property 3. Furthermore, taking into account the fact that 

no production is scheduled during λ+1, λ+2, …, γ, the 

demands in C(λ, γ) must be produced at the period λ. Since 

each demand must be satisfied within its time window, we 

know that there is no demand between the two periods λ 

and γ. That is, C(λ, γ) = D(λ, γ). In addition, it must be the 

case that Ea(γ) ≤ λ ≤ Lb(γ). Since the total amount replenished 

in period λ is the sum of demands in C(λ, γ), i.e., dλ,γ, the 

value of f(γ) is given by f(γ) = f(λ−1) + Kλ + pλdλ,γ. In 

general, f(γ) is computed by the following recursion: 

 

( ) ( )
,

(0) 0,
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( ) min { ( 1) }, 1 1.
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Here, the optimal cost is f(T+1), and it takes O(T2) to 

compute f(T+1). However, it can be improved using known 

results for this type of dynamic programming: it can be 

solved in O(Tlog T) in general, and when the cost structure 

is nonspeculative it can be solved in a short time of O(T) 

(Aggarwal and Park, 1993; Federgruen and Tzur, 1991; 

Wagelmans et al., 1992; Van Hoesel et al., 1994). In this 

paper, we apply the method in Van Hoesel et al. (1994) 

which utilizes geometric techniques. They provided a 

procedure operating in time O(Tlog T) for the type of the 

following dynamic programming: 

 

1

(0) 0,

( ) min{ ( 1) }, 1 .
i j j i

j i

G

G i A G j B C D i T
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=
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They also showed that if Cj and Di are monotone, the 

dynamic programming can be solved in O(T). Rewriting 

the main formula for f(γ) in (1), we have, for 1 1Tγ< ≤ + , 
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( ) ( )
1, 1,( ) min { ( 1) ( ) }.

a bE L
f f K p d p d

γ γ
λ λ λ λ γ

λ
γ λ
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Here, γ has the role of i in the function G and λ corresponds 

to j. And, Ai is set to zero, and the terms (Kλ − pλd1,λ), pλ 

and d1,γ play the roles of Bj, Cj, and Di, respectively. 

Moreover, pλ and d1,γ are monotone because of the 

nonspeculative cost structure of pλ and the fact that d1,γ ≤ 

d1,γ+1. Thus, our procedure in (1) runs in O(T). Even though 

the running time is O(T), the overall complexity for finding 

the optimal solution f(T+1) is O(nlog n), since we need to 

preprocess the values of a(γ), b(γ) and dλ,γ, which requires 

the sorted list of β. We finally notice that if demands are 

given as a sorted list by LDD, we can find an optimal 

solution in O(n). 

 

 

4. Concluding Remarks 
 
In this paper, we dealt with the dynamic lot-sizing model 

with production time windows during which demands must 

be satisfied. We showed that there exists an O(nlog n) 

optimal algorithm for nonspeculative cost structure. Given 

sorted list of demands in latest due dates, it is also proven 

the algorithm runs in short time of O(n).  
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