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Introduction

Due to its exceptional rheological properties, xanthan gum is widely used as an
effective stabilizer or a suitable thickener for various kinds of water-based systems.
Its numerous areas of application cover a broad range including food, pharmaceutical,
cosmetic, agricultural, textile, ceramic, and petroleum industries [1-3]. The most
important rheological properties of xanthan gum are high viscosity at low shear rates,
pronounced shear-thinning nature, and good resistance to shear degradation.

In the past, in order to investigate the rheological properties of xanthan gum,
efforts have been mainly focused on the steady shear flow behavior as well as the
frequency dependence of storage modulus and loss modulus (or dynamic viscosity) in
small amplitude oscillatory shear (SAOS) deformations. On the other hand, only a
few studies have been performed as to a nonlinear rheological behavior at large
deformations [4,5].

A strain-sweep test may be considered to be one of the most effective rheological
measurements to interpret a nonlinear viscoelastic behavicr of complex materials in
large amplitude oscillatory shear (LAOS) flow fields. However, it should be noted
that, from a purely theoretical point of view, both the storage modulus and loss
modulus at large strain amplitude range do not possess their mathematical foundations
because these two moduli are defined only within the linear viscoelastic region.
When subjected to large strain amplitudes, the stress output of a viscoelastic material
becomes no longer sinusoidal and consequently the stress-strain relationship cannot be
described in terms of the strain-independent storage and loss moduli due to higher
harmonic contributions [6].

In order to analyze these higher harmonic contributions, a group of researchers
[7,8] has developed a Fourier transform rheology that decomposes the stress data in
time domain into a frequency-dependent spectrum. We have also introduced a Fourier
transform analysis to interpret a large amplitude oscillatory shear flow behavior of
several kinds of polymer solutions [9,10].

In spite of this complexity in mathematical treatments, it is true that a large
amplitude oscillatory shear flow behavior can provide a plentiful information for a
better understanding of the overall rheology of complex materials. In addition, large
amplitude oscillatory shear test has an advantage in that it allows both the strain
amplitude and time scale to be controlled independently [11].

In this work, a nonlinear viscoelastic behavior of concentrated xanthan gum
solutions in LAOS flow fields has been elucidated by means of a Fourier transform
analysis. In particular, the influence of nonlinear viscoelastic functions derived from
the Fourier spectrum of stress response was discussed in detail.
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Theoretical background

Onogi et al. [12] have analyzed a nonlinear viscoelastic behavior on the basis of
the general theory of continuum mechanics of Green and Rivlin [13-15]. According
to their analysis, when the strain is applied as a sinusoidal shear strain of

H ) =y,sin wt, the shear stress o) is given by :

AD=G, yosinwt+G," 7 ycos wt

+G; risin3wt+ G5y cos 3wt 4+ M

where (#) is the shear stress, G, (G, G; and Gy° are the nonlinear
viscoelastic functions ( G," and G;” are the first-harmonic shear storage modulus and
loss modulus, respectively, and G, G;” are the third-harmonic shear storage
modulus and loss modulus, respectively.), 7y, is the strain amplitude and ¢ is the
angular frequency.

If the effect of fluid inertia is negligible, the shear stress can then be represented
by the following Fourier series expansion [16] :

o()=oc,sin (wt+8,)+0o3sin (3wt+38q) +-- )

Combining Eq. (1) with Eq. (2), the following sets of equations are obtained :

70 (5)

70 Q)

In addition, the fast Fourier transform (FFT) of the stress waveform may be
expressed as follows [17] :

N—
o kAw) =_]1T/' ngolo(n.dt)exp[ _j_ZL]gk;]

k=0,1,2,--, N—1 @)

where /g is the frequency interval (here equal to 27/NAp, At is the time
interval and ; is a constant.

The nonlinear viscoelastic functions can then be calculated by inserting Eq. (3),
(4), (5) and (6) into the Fourier spectrum obtained from Eq. (7). '
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Experimental section

The polymer selected in this study was xanthan gum (Mw = 2x10° g/mol)
supplied from the Sigma-Aldrich Corporation (USA). Using an Advanced Rheometric
Expansion System (ARES), a sinusoidal shear strain of W=7y sinwt at several
strain amplitudes with a constant angular frequency of , = 1 rad/s was imposed to
aqueous xanthan gum solutions with various concentrations of 1, 2, 3 and 4 wt%,
and then the Fourier spectrum was obtained from the fast Fourier transform (FFT) of
the stress responses.

A parallel-plate fixture with a radius of 25 mm was chosen as a test geometry,
and sandpaper was attached to the plate surfaces in order to eliminate a wall-slip
effect. All measurements were performed at a constant gap size of 2 mm and a
fixed temperature of 20 C.

Results and discussion

Fig. 1(a) and (b) represent the experimental stress responses to the sinusoidal strain
of small amplitude (y, = 10 %) and large amplitude (y, = 300 %), respectively, at
a fixed angular frequency of ) = 1 rad/s for 4 wi% aqueous xanthan gum solution.
A linear viscoelastic behavior is indicated by a sinusoidal stress response to a small
amplitude sinusoidal strain (%, = 10 %). In contrast, a periodic but nonsinusoidal
stress is observed as a response to a large amplitude sinusoidal strain (y; = 300 %),
indicating that a nonlinear viscoelastic behavior took place.
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Fig. 1. Stress response to (a) small amplitude sinusoidal strain ( ) = 10 %) and

(b) large amplitude sinusoidal strain (% = 300 %) for 4 wt% aqueous xanthan
gum solution.

Fig. 2(a) and (b) show the Lissajuos curves obtained from the relation between
stress and strain rate for 4 wt% aqueous xanthan gum solution. At small strain

amplitude (y, = 10 %), this curve maintain an elliptical form. However, when large

strain amplitude (y, = 300 %) was imposed, a S’ shaped curve is obtained,
demonstrating a nonlinear viscoelastic behavior.
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Fig. 2. Lissajous curves for 4 wt% aqueous xanthan gum solution with different
strain amplitudes of (a) % = 10 % and (b) % = 300 %.

Fig. 3 displays the Fourier spectrum obtained from the FFT of the experimental
stress response [Fig. 1(b)]. The Fourier spectrum consists of the first and several
higher harmonic terms from the first-harmonic at angular frequency of . = 1 rad/s
to the fifth-harmonic at angular frequency of , = 5 rad/s. Hence, the effects of
higher harmonic terms should be considered to interpret a nonlinear viscoelastic
behavior of this system.

As represented in Fig. 4, a nonlinear viscoelastic behavior of xanthan gum solution
can be more clearly analyzed by comparing the experimental stress with the nonlinear
viscoelastic functions calculated from the Fourier transform analysis.
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Fig. 3. Fouriér spectrum of nonsinusoidal Fig. 4. Experimental stress wave
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Similar trends are also observed for 1, 2 and 3 wt% aqueous xanthan gum
solutions whose results are not displayed here on account of a space limitation.
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