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ABSTRACT

The Vertical Launching System design is especially complicated by complex flow structure in a
plenum with the severe thermal state and high pressure load from the hot exhaust plume. The
flow structures are numerically simulated by using the commercial code, CFD-FASTRAN with
the axi-symmetrical Navier-Stokes equations. Two different cases are considered; that is, the
stationary fire and the moving fire.

1. INTRODUCTION

The study of the jet and its structure has been conducted for many years both experimentally
[1]-[12] and numerically [13]-[22]. Recently, Hong and Lee [19] presented the numerical
simulations of jet plume impingement onto a duct using the Navier-Stokes equations. Lee et al.
[20]-{22] also gave the numerical solutions of supersonic jet impingement in a Vertical
Launching System (VLS) type internal missile launcher.

Vertically launched missile has many advantages in steering the initial direction of missiles
regardless of launch platforms. Turbulent convective heat transfer from hot exhaust plume
provides the largest thermal input to the launching system and requires the design of protective
material for the interior surfaces of the canister and launchers. Complicated and ill-understood
chemical reactions occur in the exhaust plume as it passes through the system.

Objectives of this numerical simulation are to understand the difference between stationary fire
and moving fire. Firstly, the unsteady analysis of the stationary missile is to investigate the flow
structures, heat flux, pressure and temperature at the launcher’s bottom and the plenum.
Secondly, the unsteady simulation of the moving missile is conducted by using the overlapping
grid. The differences between the stationary and the moving fire are obvious considering the
heat flux at the launcher’s bottom.

2. NEMERICAL METHOD

The flow solver used is CFD-FASTRAN, which solves the compressible time dependent
Navier-Stokes equations in three dimensions. In our computations, the flow and geometry
condition is axi-symmetric. Turbulence is modeled by the Baldwin-Lomax model.

3. RESULTS AND DISSCUSIONS

The computational geometry used for flow simulation is shown in Fig. 1. It consists of a
supersonic nozzle mounted at the butt of the launched missile perpendicular to the launcher’s
bottom, launching tube, uptake, missile and plenum. The complex 3-dimentional VLS
geometries are simplified by the axi-symmetric ones which maintain the wetted area ratio
between the plenum upper surface and the exit area of the launching tube and the uptake. The
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main parameters are Mach number at the nozzle exit; the pressure ratio-between the jet exit and
the ambient, and the distance between the nozzle and the bottom wall. In our simulations, the
pressure ratio, the exit Mach number and the initial height (/D) are 2.51, 2.88 and 5.4,
respectively. The computation starts from the rocket motor chamber with a chamber condition.
The boundary condition of the chamber is the inlet condition with the total pressure and the total
temperature.

Figure 2 presents the contours of Mach number and temperature and the curves of heat flux and
pressure on the bottom wall. The elapsed time is 0.44 seconds. At this time, the contours of
solution are unchanged. Therefore the heat flux and pressure levels are reached as a steady state
value. High level of heat flux and high pressure zone are limited at the center of the wall as
shown in Fig.2.

Figure 3 is an instantaneous state during the missile launching. The elapsed time is 0 62 sec.
Heat flux histories in time are plotted in Fig. 4. Stationary fire reaches a steady state level of
heat flux. On the other hand, moving fire represents severe fluctuations. But the average value
of moving fire is below that of stationary fire. Heat flux is the one of main causes of ablation of
materials. Temperature contours as shown in Fig. 5 reveal similar patterns with Fig.4.

Pressure histories at the center and off the center are plotted in Fig. 6 and Fig. 7, respectively.
Pressure levels of the moving fire are higher than those of stationary fire at the center. The
pressure value at the impinging wall is determined by the distance between the nozzle exit and
the impinging wall.

4. CONCULSIONS
Numerical study of VLS flow is carried out using CFD-FASTRAN. Two different launching

cases are investigated numerically to achieve flow structures and heat flux at the bottom wall.
The stationary case is more severe than the moving fire considering the heat flux histories.
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Fig. 1 Definitions of the computational geometries
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Fig. 3 Mach number and temperature contours with moving fire(unsteady simulaion)
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