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Structural Damage Detection through System Identification
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ABSTRACT

This paper presents an experimental investigation of a recently developed Kronecker Product (KP) method to
determine the type, location, and intensity of structural damage from an identified state-space model of the system.
Although this inverse problem appears to be highly nonlinear, the system mass, stiffness, and damping matrices are
identified through a series of transformations, and with the aid of the Kronecker product, only linear operations are
involved in the process. Since a state-space model can be identified directly from input-output data, an initial finite
element model and/or model updating are not required. The test structure is a two-degree-of-freedom torsional
system in which mass and stiffness are arbitrarily adjustable to simulate various conditions of structural damage.
This simple apparatus demonstrates the capability of the damage detection method by not only identifying the
location and the extent of the damage, but also differentiating the nature of the damage. The potential applicability
of the KP method for structural damage identification is confirmed by laboratory test.

1. Introduction

The research on the realization of state-space model
from input-output data has been well developed for the
last few decades. A standard system identification
algorithm such as OKID-ERA [1,2] determines a
minimally realized state-space model from observer
Markov parameters and truncation of a Hankel matrix.
However rearranging a state-space model into a second-
order form such as mass, stiffness, and damping matrices
is non-trivial because typically a realized state-space
model is not in physical coordinates. There have been
several research efforts trying to extract second-order
mechanical system matrices from identified state-space
model. Alvin and Park [3] developed a transformation
algorithm using the McMillan normal form realization.
The study also includes other variants of the method that
can estimate normal mode from non-proportional
damping through pseudo-normal mode basis. Tseng ef. al.
[4] investigated an algorithm that can also deal with
gyroscopic systems with repeated undamped modal
frequencies. Angelis et. al [5] proposed a more
generalized technique that relaxes the constraints on the
number of sensors/actuator and co-location requirement.
However, all of these studies need an intermediate
nonlinear step of solving eigenvalue problems. Recently,
Phan and Longman [6] developed a linear solution for
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extracting system parameters in physical coordinates via
the properties of Kronecker product and stack operation.
First, a state-space model is identified from input-output
data by any state-space system identification technique
such as OKID-ERA. From such an identified state-space
model, structural properties, i.e., stiffness, mass, and
damping matrices can be extracted from a series of linear
transformations.

Previously, Ray and Koh [7] investigated a damage
detection problem in torsional system, given empirical
correlation between feedback control gain and sensitivity
of modal frequencies. Experiment results proved that
modal sensitivity of structural damage in torsional
system could be significantly enhanced through
sensitivity enhancing control (SEC). However, their
approach, like all other modal-based damage detection
methods, requires the information of modal frequencies
of the test structure. Modal frequency is a global
property of dynamic system and sensitive to both mass
and stiffness variations. In general, observation of modal
frequency change alone is insufficient for identifying the
type of damage (i.e., mass or stiffness).

This paper presents an experimental demonstration of
Kronecker Product (KP) method [6]. The technique
directly applies to damage detection problem by
comparing the reconstructed structural parameters such
as mass and stiffness before and after the occurrence of
damage. The strength of this approach lies in a
successful identification of damage presence, location,
and type, without any priori knowledge of the FE model
of the structure. First, the mathematical formulation of
KP method is briefly explained. Secondly, the
description of experimental procedure and test setup are
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presented. The test-bed in this study is a two-degree-of-
freedom torsional system. The method does not require
modal frequencies or a baseline finite element model. To
introduce different types of damage conditions, mass and
stiffness of the system are systematically perturbed.
Finally, test results are presented and discussed in terms
of damage localization and classification of damage type.
This experimental demonstration should be considered as
a preliminary step in series of efforts for implementing a
system identification algorithm into the development of
structural damage identification technique for more
complicated structures. The same experiment data, i.e.,
input-output time history of the torsional system in
reference [7] is used in this study.

2. Kronecker Product Method

Although the reference [6] provides a detailed
derivation of KP method, for the sake of completeness, a
brief summary is provided for the case of having a full
set of displacement measurement in this section.
Consider a spatially discrete system having 7 physical
coordinates w(r) and ¥ inputs u(¢)

M (£) + @ () + Kw(t) = Bu(z) m

where M, ©, and K are mass, damping, and
stiffness matrices, respectively. The B(nxr) is the
input influence matrix. The second-order equation of
motion can be rewritten in a state-space format with its
physical coordinate intact as

x(t) = Ax(¢)+ Bu(t)
W(t) = Cx(t)+ Du(r)

. _ W(I) _ Onxn Inxn _ Onxr
“”_[WUJ"A_{4L —HJ’ B—{H3] ®

Here, partitions holding M,®, and K
expressed as

@

can be

H =M'K, H,=M"'®, H,=M"B [E))

If we have a full set of displacement measurements
(which is the case for this experiment),

c=\,, o,.]- D=0,, (5)

nxn

Given H_, , in physical coordinates, structural

parameters M, ® , and K can be extracted from the
Kronecker product and stack operator techniques
presented in Section 2.2.

2.1 Transforming Physical Coordinates
Unfortunately, a realized state-space model is not
necessarily in the physical coordinates given in Eq. (3)

and (4). Then the first step in extractingM ,® K is to

transform a realized state-space model into a physical
coordinate system. Here a transformation matrix is
developed that will transform any realized state-space
model (4,,B,,C.) into the physical coordinates
of (4,B,C) . We review the case where full set of
displacement measurements is available. Other cases for
velocity, acceleration, and mixed measurements are
explained in the reference [6]. In deriving this
transformation matrix, a similarity transformation matrix

QO is used.

A=0(4)0™
B=0Q(B,) (6)
C=(c)o'=[1,, 0,..]=C
where,
C
_|& @)
Q[Q}

here, (O is any nonsingular matrix. This intermediate
step is purely to transform C, into C . Another
similarity transformation 7T is needed to transform
(4,B) into (A4,B) without modifying C which is
already transformed correctly by J . Accordingly, the

transformation matrix 7' should satisfy

A=T(DT"
B=T(B) ®
C=r!

For further development, 7, 4 , Zl , and B are
partitioned as

{m Q}Az{o 1}

T21 T22 A21 Azz

1:1‘=':(‘€)11 (‘?)12} BI[BIJ
(A)zl (A)zz B2

Note that the transformed matrices (1:1, l§) belong to an

intermediate step between a realized state-space model
and a state-space model in physical coordinate. Here,

T

It

®

another condition is imposed to T that will preserveé "

ool 7

21

Ta|_
TJ_[/ 0] (10)

In order to satisfy Eq. (10), 7,,=/and T, =0. From
Eq. (8), it is obvious that
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which produces T, =(4), ,and T, =(A),. Thus, the

(1)

transformation matrix 7 that transforms (A4,8,C) to
(4, B,C) in physical coordinate becomes

T—[ ! 0 ] (12)
L@, (A,

After the transformation is completed, it is easy to find
H,_, ; that are simply the partitions of A, B as

H =-4,, H,=-4,,, H,= B, (13)

2.2 Extracting System Matrices

Having rearranged a realized state-space model
(4,,B,,C,) into a physical coordinate system (A4,B,C)
through two consecutive transformations ( Q,T ), all
partitions H,

_. ; are defined. Next, physical parameters

of second-order dynamical system (M, ® , and K ) can
be simultaneously recovered with the aid of the
Kronecker product and the stack operator. The following
identity is used.

(4BC)S = (CT ® 4)B® a4

In order to maintain the symmetry of M,K , and

possibly ® , two additional equations should be
considered as

MH, = H'/M

(15)
MH, = H)M

Imposing symmetry conditions in Eq. (15) plays a key
role in findingM ,K | and © because knowing
H,., ; is not enough to solve Eq. (5). Also, note that the

symmetry condition of the damping matrix (® ) is not
needed for the case of non-symmetric damping.
Combining Eq. (5) and (15), we have the following set of
linear equations,
K* =(H] @ H\W*
0’ =(H] @ M
B® = (H] ® NW* (16)
(Hf ® M = (1 @ H M"
(H; ® HM® = (/ @ H] )M*

Thus, the elements of mass, stiffness, and damping

matrices are determined by solving a linear equation,

RP=S (17)
where
H ®1 0 -/
Hl®1 -1 0 M®
R= H] ®/ 0 0, p_|@*]:
(H®N-(UI®H) 0 0 KS
(H;®N-(I®H}) 0 0
0
0
s=|BS (18)
0
0

As long as R is full (column) rank, the symmetry
condition on the damping matrix is not needed to solve

for the elements of M,K, and ® because Eq. (18)
actually contains more equations then the minimum
needed.

3. Experimental Procedure
3.1 Description of Torsional System

As described in reference [7,8], originally the
torsional system has three inertia disks connected by two
torsionally flexible rods or preferably called torsional
springs [9]. By clamping the top disk to the body frame,
a 2-DOF spring-mass-damper system of fixed-free
boundary condition can be modeled as shown in Figure 1
The brushless servo motor, as an input force, drives the

shaft that is linked to the bottom disk by torque 7'(f).

The angular displacement (&) of each disk is measured
from optical encoder attached through a rigid belt and
pulley. Therefore, the test structure in this study has a
single torque input and two angular displacement outputs.

As shown in Figure 1, the stiffness of the torsional
spring or rod and the inertia of disk are defined as
k; and J, , respectively. Placing a stiffener-type clamp at

the center of a torsional spring rod creates stiffness
damage. This clamp locally resists the rotation of the rod
so that the stiffness of torsional spring is increased by a
certain degree. The degree of stiffening is nonlinear
function of the contact force and the area between the
spring rod and the stiffening plate. Mass damage is also
easily implemented by relocating mass blocks on each
disk. As shown in Figure 1, each disk has four mass
blocks and adjustable slots. The inertia of the disk can be
roughly estimated from calculating mass of four blocks
and their distance to the centerline (@ ). Thus, both
stiffness and inertia of torsional system can be readily
perturbed to imitate different types of damage conditions.
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Figure 1. Schematics of 2-DOF torsional system:
assembly and stiffener patch for stiffness damage.

3.2 Identification of State-Space
Structural Parameters

A Gaussian random noise input to the servo motor
excites the torsional system for 60 seconds having
sampling time of 0.01 second. Also, dSPACE software
has been used for data acquisition. Then, state-space
system matrices are sought from the input/output time
history data using the OKID-ERA. The final order of the
identified model has been reduced to four (n=4)

Model and

through the singular value spectrum of the Hankel matrix.

Having determined the minimal state-space model, the
stiffness and mass matrices of the system are going to be
extracted through KP method. Note that this
transformation requires the number of measurement
outputs to be equal to the DOFs of second-order model: a
condition that is satisfied by encoder for measuring
rotational angle at each disk. In other words, the number
of measurements determines the size of stiffness and
mass matrices.

To represent the dynamics of torsional system, the
friction caused from support bearings is idealized to

viscous damping (¢; Jon each disk. Thus, the equation of

motion is

JO()+ ©6(1) +KO(t) = Bu(t) (19)

where J,® , and K are mass moment of inertia,
damping, and stiffness matrices, respectively:

J= J, 0 O = ¢ 0 K = kl _kl (20)
0 J, 0 ¢ -k k+k,
Here, input Bu(t) represents a torque, 7(t) , applied on

disk 1 from the servo motor. (9(t)=[91 492]7‘ are

angular positions of lower and upper disk in Figure 1,
respectively. Transforming this into state-space form,

@1

x=Ax+ Bu
where,

PR 1 a| O
=K -J'e “|lu'B

and the state is x=[6’ 9]7. Since, a state-space model
(4,,B,,C,) is identified from OKID-ERA, discrete
second-order system matrices (J,®,K) are now to be
reconstructed by KP method.

(22)

4. Damage Cases and Experiment
Results

In total, nine different damage cases are
investigated. The first three belong to mass damage,
i.e., two for mass change on each individual disk and
the other one for dual damage on both disks. Here,
mass damage is created by moving four mass blocks
(4x 0.5kg) by 10mm toward the center of the disk so
that the total inertia for each disk is reduced by
approximately 18%. Similar to mass damage, three
different stiffness damages are generated, i.e., two
cases for each individual torsional spring and the other
one for dual damages on both springs. In case of
stiffness damage, unlike mass, the true magnitude of
stiffness change is not known a priori: as it depends
on nonlinear contact characteristics between the clamp
and the rod. Finally, the last three cases consider a
group of mixed type damages such as simultaneously
occurred damages on both spring rod and disk. This
mixed type damage will illustrate the advantage of the
proposed method over other modal-based damage
detection approaches that only use modal frequency
change.

Figure 2 illustrates identified stiffness and mass
parameters of the torsional system for healthy and six
different damage cases: (S/) stiffness damage on

spring 1 (k,), (82) stiffness damage on spring 2
(k,), and (S12) for dual damages on both springs.
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Likewise mass damage on the disk is denoted as J1, J2,
and JI2. The individual experiment of healthy and
damage case has been repeated for 10 times.
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Figure 2. Experimentally identified stiffness and mass
moment of inertia for healthy and six different damage
cases: S1, 82, 812, J1, J2, and J12.

The height of bar indicates identified value of system
parameters: the stiffness of spring and mass inertia of
disk. It is obvious from the figure that stiffness changes
are observed between healthy and each damage case.
Since stiffness damage in this experiment is caused by
stiffener patch, spring constants are actually increased
compared to healthy cases. The first plot in the figure
(Spring 1), clearly shows the stiffness increment on the
damage cases S/ and S/2 compared to Healthy and S2.
Likewise, in case of Spring 2, damage S2 and S/2 get
higher spring constant values than those of Healthy and
S1 cases, which clearly indicate a distinction between
damaged and healthy state. Especially, differences
between healthy and damaged states of mass (Mass / and
Mass 2) are more significant than stiffness case. Note
that mass damage produces consistent mass reduction
ratio of 20%, which is very close to the true reduction of
mass moment of inertia (18%). In general, identifying
mass change is more accurate than identifying stiffness
change. From the perspective of experiment,
implementing mass perturbation on the disk is easier
than increasing stiffness of the spring. Also, attaching
stiffener may produce a similar effect of nonlinear
damping to the whole system.

Table 1 summarizes the mean values of identified
stiffness, mass, and damping parameters for all cases.
Figure 3 presents identification results for mixed-type
damage cases. Here, it is considered that two different
types of damages, i.e., stiffness and mass damages, are
simultaneously occurred. For example, the damage case
S$2J1 denotes stiffness damage on spring 2 and mass
damage on disk 1. Again, the true severities of stiffness
damage are unknown in advance. The identified stiffness
and mass parameters clearly indicates that variations of
parameter are individually identified regardless of other

damage type. For instance, S/J/ increases the stiffness
value of spring 1 alone, while S2/2 only reduce the
inertia for mass 2. Thus, identification of each parameter
is not affected by the presence of different type of
damage. Similar to the result of homogeneous damage
case (Figure 2), the identified mass parameters are more
consistent than stiffness parameters.

Table 1. Experimentally identified stiffness £, , mass J,,

and damping ¢; for healthy and damaged cases (all in

suitable units). The bold number indicates the identified
parameters of damaged one.

Damage Cases
Parameters | Heaithy S 5 77 ¥
kl 2.8228 | 2.9421 | 2.7931 2.7350 | 2.7022
k2 27606 | 2.7726 | 2.8369 | 2.6631 2.5940
Jl 0.0212 0.0212 0.0211 0.0169 0.0207
Jy 0.0203 | 0.0203 | 00200 | 00197 | 0.0158
G 0.0163 | 0.0156 | 0.0159 | 0.0138 | 0.0167
€2 0.0062 [ 0.0065 | 0.0068 | 0.0069 | 0.0059
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Figure 3. Experimentally identified stiffness and mass
moment of inertia for healthy and three mixed damage
cases: S1J1, S2J1, and S2J2.

It is well known that mass and stiffness changes
associated with certain extent and location may produce
no natural frequency shift at all due to canceling effects,
which make it difficult to detect damage using only
frequency-domain  measurements.  Thus,  direct
reconstruction of stiffness and mass matrices has
advantage over other modal-based methods especially
when the type of damage is unknown. In this regard, the
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torsional plant provides a perfect exemplary apparatus
for demonstrating damage detection capability, i.e.,
differentiating damage types in a structure. The torsional
system can accommodate various type and condition of
parameter perturbations without imposing interference
between them. This experiment shows that mass and
stiffness can be independently identified regardless of
locations and amount of their changes. The identified

damping parameters exhibit somewhat contrasting results.

The damping parameters are not significantly affected by
stiffness and mass changes except for the Damping I in
the mass damage cases (J/, J2, and JI2) as shown in
Figure 4. While damping is not generally considered as a
damage-sensitive parameter, it is obvious that damping is

more closely coupled with mass change in this
experiment.
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Figure 4. Experimentally identified damping

parameters for healthy and six different damage cases:
S1, 82,812, J1, J2,and JI2.

5. Conclusions

This experimental study has shown that direct
identification of stiffness and mass matrices from input-
output data provides a potential tool for structural
damage detection. The KP method does not require
initial finite element model or frequency-domain data.
The method offers a linear solution in extracting mass,
damping and stiffness matrices from realized state-space
model without solving an eigenvalue problem. This
experimental validation of KP method allows us to
envision potential solutions for more general inverse
vibration problems. The significance of this study can be
found from the experimental application of newly
developed system identification technique to the
practical problem of structural health monitoring without
given any priori information of the structure. Moreover,
the presence, location, extent, and even types of damage
can be directly identified.
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