구간치 쇼케이적분에의해 정의된 집합체 연산자의 성질

Some properties of interval-valued Choquet integral-baed aggregation operators

장이채

건국대학교 전산수학과 E-mail: leechae.jang@kku.ac.kr

요 약

본 논문은 집합치 집합체 연산자를 정의하고 이들의 성질들을 조사한다. 또한 구간치 쇼케이 적분에의해 정의된 집합체 연산자를 정의 하고 이들의 특성들을 제시한다.

Abstract

In this paper, we consider set-valued aggregation operators and investigate some properties of them. Moreover, we define interval-valued Choquet integral aggregation operators and discuss their characterizations.

Key Words: Aggregation operator, Interval-valued random variable, Choquet integral, Fuzzy measure

1. Preliminaries and Definitions

Let X be a non-empty index set and \Im a σ -algebra of subsets of X. A set function $\mu \Im \to [0,1]$ is called a fuzzy measure if it is monotone and $\mu(\emptyset) = 0$ (see [3,4,14,16,17,18]).

If X is a finite set and $\Im = 2^X$, a fuzzy measure $\mu \Im \to [0,1]$ is called symmetric if it is invariant under bijective transformations of X, i.e., for each bijection $\psi \colon X \to X$ and for each $E \in \Im$ we have $\mu(\psi^{-1}(E)) = \mu(E)$.

For each set $B \subseteq R^2$, let $\Sigma(B)$ be the σ -algebra of all Borel subsets of B. Denoted by $L(\Im)$ the set of all random variables which are \Im -measurable functions from X to [0,1].

In previous works [5,13], the authors investigated measure-based aggregation operators and Choquet integral-based aggregation operators. These constructions are useful methods to decision making, information theory, expected utility theory,

and risk analysis.

We note that set-valued Choquet integrals were first introduced by Jang, Kil, Kim and Kwon[6] and restudied by Zhang, Guo and Lia[19]. In the papers([6,7,8,9,10,11,19]), they have been studied some properties of set-valued Choquet integrals and structural characteristics of interval-valued Choquet integrals.

Definition 1.1 ([3,4,14,15,16,17,18]) (1) The Choquet integral of a random variable f with respect to a fuzzy measure μ on $A \in \mathcal{T}$ is defined by

$$(C) \int_{A} f \, d\mu = \int_{0}^{\infty} \mu(x|f(x)) \alpha \cap A) \, d\alpha$$

where the integrand on the right-hand side is an ordinary one.

(2) A random variable f is called c-integrable if the Choquet integral of f can be defined and its value is finite.

We note that the Choquet integral is a generalization of the Lebesgue integral, since they coincide when μ is a classical(σ

-additive) measure.

Definition 1.2 ([3,4,14]) Let f, g be nonnegative random variables. We say that f and g are comonotonic, in symbol $f \sim g$ if $f(x) \langle f(x') \Rightarrow g(x) \leq g(x')$ for all $x, x' \in X$

Theorem 1.3 ([3,4,14]) Let f, g be nonnegative random variables. Then we have

- (1) $f \sim f$,
- (2) $f \sim g \Rightarrow g \sim f$,
- (3) $f \sim a$ for all $a \in \mathbb{R}^+$.
- (4) $f \sim g$ and $g \sim h \Rightarrow f \sim (g+h)$.

Theorem 1.4 ([3,4,14]) Let f, g be nonnegative random variables. Then we have the followings.

- (1) If $f \le g$, then $(C) \int f d\mu \le (C) \int g d\mu$.
- (2) If $A \subseteq B$ and $A, B \in \mathcal{I}$, then $(C) \int_A f d\mu \leq (C) \int_B f d\mu.$
- (3) If $f \sim g$ and $a, b \in R^+$, then

$$(C) \int (af+bg) d\mu$$
$$= a(C) \int f d\mu + b(C) \int g d\mu$$

(4) If $(f \lor g)(x) = f(x) \lor g(x)$ and $(f \land g)(x) = f(x) \land g(x)$ for all $x \in X$, then

$$(C) \int f \vee g d\mu \ge (C) \int f d\mu \vee (C) \int g d\mu$$
 and

 $(C) \int f \wedge g \, d\mu \leq (C) \int f d\mu \wedge (C) \int g \, d\mu.$

We denote I([0,1]) by as $n \to \infty$ $I([0,1]) = \overline{a} = [a^-, a^+] | a^- \le a^+, a^-, a^+ \in [0,1] = 1, 2, ...,$

For any $a \in [0,1]$, we define a = [a, a]. Obviously, $a \in I([0,1])$.

Definition 1.5 For two intervals $\overline{a} = [a^-, a^+], \overline{b} = [b^-, b^+] \in I([0,1]),$ then we define

- (1) $\overline{a} \wedge \overline{b} = [a^- \wedge b^-, a^+ \wedge b^+]$
- (2) $\overline{a}\sqrt{b} = [a^- \vee b^-, a^+ \vee b^+]$
- (3) $\overline{a} \le \overline{b}$ if and only if $a^- \le b^-$ and $a^+ \le b^+$,

 $\underbrace{a+b}_{a+b}.$ (4) a < b if and only if $a \le b$ and

(5)
$$\overline{a} \subset \overline{b}$$
 if and only if $b^- \le a^- \le a^+ \le b^+$.

We remark that I([0,1]) satisfies idempotent law, commutative law, associative law, absorption law, and distributive law.

Theorem 1.7 (1) If we define $\overline{a} \cdot \overline{b} = \{x \cdot y | x \in \overline{a}, y \in \overline{b}\}$

for all \overline{a} , $\overline{b} \in I([0,1])$, then we have $\overline{a \cdot b} = [a - b - , a + b +]$.

(2) If $d_H: I([0,1]) \times I([0,1]) \rightarrow [0,\infty)$ is a Hausdorff metric defined by

$$d_{H}(A, B) = \max\{\sup_{x \in A} \inf_{y \in B} |x - y|,$$

$$\sup_{y \in B} \inf_{x \in A} |x - y|\}$$

then we have

$$d_H(\bar{a}, \bar{b}) = max\{|a^- - b^-|, |a^+ - b^+|\}.$$

Let \overline{L} ($\mathfrak I$) theset of all interval-valued random variables which are $\mathfrak I$ -measurable interval-valued functions from X to $I([0,1])\setminus\{\emptyset\}$. We recall that an interval-valued function $f\in\overline{L}$ ($\mathfrak I$) is $\mathfrak I$ -measurable if for any open set $O\subset[0,1]$, $\overline{f}^{-1}(O)=\{x\in X|\overline{f}(x)\cap O\neq\emptyset\}\in\mathfrak I$.

Definition 1.8 Let
$$\{A_n\} \subset I([0,1])$$
 be a sequence and $A \in I([0,1])$. We define

(1) $A_n \uparrow (\downarrow) A(order)$ if $d_n(A_n, A) \rightarrow 0$ as $n \rightarrow \infty$ and $A_n \leq (\geq) A_{n+1}$ for all $A_n \downarrow 1$ 2

(2)
$$A_n \uparrow (\downarrow) A (inclusion)$$
 if $d_n(A_n, A) \rightarrow 0$ as $n \rightarrow \infty$ and $A_n \subset (\supset) A_{n+1}$ for all $n = 1, 2, \cdots$,

Definition 1.9 (1) The Choquet integral of an interval-valued random variable \bar{f} on $A \in \Im$ is defined by

$$(C) \int_{A} \overline{f} d\mu = \{ (C) \int_{A} f d\mu \mid f \in S(\overline{f}) \}$$

where $S\left(\overline{f}\right)$ is the family of measurable

selections of \overline{f} .

(2) \bar{f} is said to be cintegrable if

$$(C)\int_{-}^{-}fd\mu\neq\emptyset$$

(3) \bar{f} is said to be Choquet inetgrably bounded if there is a cintegrable random variable g such that

$$||f|| = \sup_{r \in f(x)} |r| \le g(x)$$
, for all $x \in X$.

 $(C)\int_{X}^{-}fd\mu$, we write of Instead

(C) $\int fd\mu$. We recall that if $A, B \in C(X)$ (the class of closed subsets of X, then $A \le B$ means

 $infA \le infB$ and $supA \le supB$.

Theorem 1.10 ([12, 19]) (1) If a closed set-valued random variable f is c-integrable and if $A \le (\subset) B$ and $A, B \in C(X)$, then

$$(C)\int_{A}^{\overline{f}}d\mu \leq (C)(C)\int_{B}^{\overline{f}}d\mu.$$

- (2) If a fuzzy measure μ is continuous and a closed set-valued random variable f Choquet integrably bounded, then (C) $\int f d\mu$ is a closed set.
- (3) If a fuzzy measure μ is continuous and an interval-avlued random variable $f=[f^-,f^+]$ is Choquet integrably bounded, then we have

$$(C)\int_{-}^{-}fd\mu=[(C)\int_{-}^{}f^{-}d\mu,(C)\int_{-}^{}f^{+}d\mu].$$

2. Set-valued aggregation operators.

If $f \in L(\mathfrak{I})$, we $h_{\mu,\dot{f}}[0,1] \rightarrow [0,1]$ by define the we function

 $h_{\mu,f}(t) = \mu(\{f \ge t\}).$ interval-valued and function $h_{\mu,f}(0,1] \to I([0,1])$ by

 $\overline{h}_{\mu,\overline{f}}(t) = \{h_{\mu,f}(t) | f \in S(\overline{f})\}$ Then we obtain some basic properties of

Theorem 2.1 If \bar{f} is an interval-valued random variable and if μ is continuous, then the function $\bar{h}_{\mu,\bar{f}}$ is non-increasing Borel measurable and $h_{\mu,\bar{f}}(0)=1$

 h_{uf}

([13]) Let (X, \mathcal{I}, μ) and Definition 2.2 $((0,1)^2, R((0,1)^2, m))$ be two fuzzy measure

spaces. The functional $M_{\mu, m}L(\mathfrak{I}) \rightarrow [0, 1]$

 $M_{\mu,f}(f) = m(\{(x,y) \in (0,1)^2 | y \langle h_{\mu,f}(x) \})$ is called (μ,m) -aggregation operator.

Definition 2.3 The interval-valued functional $M_{\mu,m}$: $L(\mathfrak{I}) \rightarrow \mathcal{S}([0,1])$ given by

 $\overline{M}_{\mu, m}(\overline{f}) = \{M_{\mu, m}(f) | f \in S(\overline{f})\}$ is called a set-valued (μ, m) -aggregation operator.

Obviously, we have the following basic properties.

Theorem 2.4 Let μ, m be two fuzzy measures as in Definition 2.2. If set-valued (μ, m) -aggregation operator, then we have

(1) $\overline{M}_{\mu,\underline{m}}(\underline{0})=0$ and $\overline{M}_{\mu,\underline{m}}(\underline{1})=1$, (2) If $f,g\in\underline{I}(\mathfrak{I})$ and $\underline{f}\leq g$, then

(2) If
$$f, g \in \underline{I}(\Im)$$
 and $\underline{f} \leq \underline{g}$, then $M_{\mu, m}(\underline{f}) \leq M_{\mu, m}(\underline{g})$.

Now, we investigate some characterizations of set-valued (μ, m) -aggregation operators. We denote that a crisp subset E of X $I_E: X \rightarrow \{0,1\}$ is the characteristic of E mapping exactly the elements of E to 1.

Theorem 2.5 Let $(X\Im .u)$ $((0,1)^2,\underline{B}((0,1)^2),m)$ be two fuzzy measures $M_{\mu,m}$: $L(\mathfrak{I}) \rightarrow \mathcal{E}([0,1])$ a set-valued (μ, m) -aggregation operator. Then we have the followings;

- $M_{\mu,m}$ is idempotent for each fuzzy measure μ on (X, \Im) if and only if for all $x \in (0,1)$, we have
- (2) The fuzzy measure μ on (X, \underline{I}) can be reproduced from $M_{\mu,m}$ via $\mu(E) = M_{\mu,m}(I_E)$ if and only if

 $m((0,1)\times(0,x))=x$

for all $x \in Ran(\mu)$.

(3) If X is a finite set and if $\frac{a}{M}$ fuzzy measure μ is symmetric, then $\overline{M}_{\mu,m}$ is symmetric for each fuzzy measure m on $((0,1)^2, B(0,1)^2).$

3. Interval-valued Choquet integral-based aggregation operators.

In this section, using Corollary 3.4 ([13]), discuss interval-valued integral-based aggregation operators. We recall that especially important is the case when we are constructing an (μ, m) aggregation operator by means of some σ -additive $mB((0,1)^2) \rightarrow [0,1]$, in which case m is a probability measure on the product space $((0,1)^2, B((0,1)^2))$. By Klement et al. ([13, p.9]), there exists a copula $C[0,1]^2 \rightarrow [0,1]$ such that for all $(x,y) \in (0,1)^2$

 $m((0,x)\times(0,y)) = C(P_1((0,x)), P_2((0,y)))$ where P_1 and P_2 are the respective marginal probabilities of m

Let me introduce the following theorem as a consequence of Klement et al.'s Corollary

4.1([13]).

Theorem 3.1 Let $mB((0,1)^2) \rightarrow [0,1]$ be a probability measure with marginal $P_1 = \lambda$

(the Lebesgue measure) and $P_2 = P$ linked by the product copula T_p , i.e. $m((0,x)\times(0,y)) = xP((0,y))$ for all $(x,y) \in (0,1)^2$. Let (X, \Im, μ) be a fuzzy measure space such that the underlying topological space (X, \mathcal{I}) is compact. Then the (μ, m) -aggregation operator $M_{\mu, m}$ is comonotonic additive, i.e. for all comonotonic $f, g: X \rightarrow [0, 1]$ random variables $f + g \le 1,$ $M_{\mu, m}(f + g) = M_{\mu, m}(f) + M_{\mu, m}(g).$

Keeping all the notations and hypotheses

Keeping all the notations and hypotheses of Theorem 3.1 and introducing another fuzzy measure $P \circ \mu \circlearrowleft [0,1]$ by $P \circ \mu(E) = P((0,\mu(E)))$, it is well-known that the (μ,m) -aggregation operator $M_{\mu,m}$ discussed in Theorem 3.1 equals the Choquet integral with respect to $P \circ \mu$ (see [13, p.9]), i.e.

 $M_{\mu, m}(f) = (C) \int_X f dP \circ \mu$ (3.1) for all $f \in L(\mathfrak{I})$. Thus we can obtain the following theorem.

Theorem 3.2 Let $\mu, m, P_1 = \lambda, P_2 = P$ be as in Theorem 3.1. Then under the same of Theorem 3.1, hypotheses represented by

$$\overline{M}_{\mu, m}(\overline{f}) = (C) \int \overline{f} dP \circ \mu.$$

Theorem 3.3 Let μ , m, $P_1 = \lambda$, $P_2 = P$ be as in Theorem 3.1 and suppose the same hypotheses of Theorem 3.1. If a fuzzy measure μ is continuous and f is Choquet integrably bounded, then $M_{\mu,m}(f)$ is interval in I([0,1]).

참고 문 헌 [1] J. Aubin, "Set-valued analysis," Birkauser Boston.

[2] R.J. Aumann, "Integrals of set-valued functions," J. Math. Anal. Appl. 12(1965),

1-12.
[3] M.J. Bilanos, L.M.de Campos and A. Gonzalez, "Convergence properties of the monotone expectation and its application to

the extension of fuzzy measures," Fuzzy Sets and Systems 33 (1989), 201–212. [4] L.M. de Campos and M.J. Bilanos, "Characterization and comparison of Sugeno and Choquet integrals," Fuzzy Sets and

Systems 52 (1992), 61-67.

[5] T. Calvo and R. Mesiar, "Aggregation operators: ordering and bounds," Fuzzy Sets and Systems 139(2003), 685-697.
[6] L.C.Jang, B.M. Kil, Y.K.Kim and J.S.Kwon, Some properties of Choquet integrals of set-valued functions, Fuzzy Sets and Systems 91(1997) 95-98

and Systems 91(1997), 95-98.
[7] L.C.Jang and J.S.Kwon, "On the representation of Choquet integrals of set-valued functions and null sets," Fuzzy Sets and Systems 112(2000), 233-239.

[8] L.C.Jang, T.Kim and J.D.Jeon, set-valued Choquet integrals convergence theorems," Advanced St "On Studies and Contemporary Mathematics 6(1)(2003),

[9] L.C.Jang, T.Kim and J.D. Jeon, "On set-valued Choquet integrals and set-valued Choquet integrals convergence theorems (II)," Bull. Korean Math. Soc. 40(1) (2003), 139-147.

[10] L.C.Jang, T.Kim and D. Park, "A note on convexity and comonotonically additivity of set-valued Choquet integrals," Far East J. Appl. Math. 11(2) (2003), 137-148.
[11] L.C.Jang, "Interval-valued Choquet integrals and their applications," J. of Applied Mathematics and Computing

Applied Mathematics and Computing

16(1-2)(2004), 429-445. [12] L.C. Jang, "The application interval-valued Choquet integrals in multicriteria decision aid," J. of Applied Mathematics and Computing 20(1-2)(2006), 549-556.

[13] E.P. Klement, R.Mesiar and E.Pap, "Measure-based aggregation operators," Fuzzy Sets and Systems 142(2004), 3-14. [14] T. Murofushi and M.Sugeno, "An

interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure," Fuzzy Sets and

to a fuzzy measure," Fuzzy Sets and Systems 29(1989), 201–227. [15] T. Murofushi and M.Sugeno, "A theory of fuzzy measures: representations, the Choquet integral, and null sets," J. Math. Anal. and Appl. 159(1991), 532–549. [16] T. Murofushi and M.Sugeno, "Some quantities represented by Choquet integral"

quantities represented by Choquet integral," Fuzzy Sets and Systems 56(1993), 225-235. [17] Z.Wang, G.J.Klir and W.Wang, "Fuzzy measures defined by fuzzy integral and their absolute continuity," J. Math. Anal. and Appl. 203(1996), 150–165.
[18] Z.Wang, G.J.Klir and W.Wang, "Monotone set functions defined by Choquet

integral," Fuzzy Sets and Systems 81(1996),

241-250. [19] D.Zhang, C.Guo and D.Liu, "Set-valued Choquet integrals revisited," Fuzzy Sets and Systems 147(2004), 475-485.