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Abstract

The purpose of this paper is to establish the common fixed pdint theorem in the
intuitionistic fuzzy metric- space in which it is a little revised in Park [11]. Our research
are an extension of Jungck’s common fixed point theorem (8] in the intuitionistic fuzzy

metric space.
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1. Introduction Preliminaries

Zadeh [17) was introduced to the concept of
fuzzy sets, Lowen [10] is defined convergence
in a fuzzy topological space which enables us
to characterize fuzzy compactness. Grabiec [6],
Park and Kim [12] are studied a fixed point in
a fuzzy metric space introduced by Kramosil
and Michalek [9], and Subrahmanyam [16] is
proved a common fixed point theorem in fuzzy
metric spaces.

On the other hand, Attanassov [1]
generalized this idea to intuitionistic fuzzy
sets, and later there has been much progress
in the study of intuitionistic fuzzy sets by
many authors [1-4, 11]. Also, Park [11] is
defined an intuitionistic fuzzy metric space,
and Park, Kwun and Park [13] are studied a
fixed point theorem in an intuitionistic fuzzy
metric space.
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In this note, Jungck’s common fixed point
theorem in metric space is generalized in this
intuitionistic fuzzy metric space in which it is
a little revised in Park [11]..

2. Preliminaries

definitions,
intuitionistic

Now, we will give
properties and notation of the
fuzzy metric space.

some

Definition 2.1([15]). A binary operation
*:.[0,1X[0,1] — [0,1] is continuous t-norm if *
is satisfying the following conditions:

(a) * is commutative and associative,

(b) * is continuous,

(c) axl=a for all a€[0,1],

(d) a*b=c*d whenever
(a,b,c,d € [0,1]).

a<c and b=d
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&
:{0,11%[0,1] — [0,1] is continuous t-conorm if"

& is satisfying the following conditions:

Definition 2.2([15]). A binary operation

(a) ¢© is commutative and associative,
(b) < is continuous,

(c) adl=a for all a& [0,1],

(d) aOb=c¢ Od whenever a<c and b=d
(a,b,c,dE€ [0,1D).

Definition 2.3. The 5-tuple (X, M, N,*, &)
is said to be an intuitionistic fuzzy metric
space if X 1is an arbitrary set, is a
continuous O

t-conorm and M, N are fuzzy sets on X2 %(0,

E3

t-norm, is a continuous

o) satisfying the following conditions; for all
x,y,2E€ X, such that

(a) M(x,y,t)>0,

(b) M(x,y,t)=1 < x=y,

(c) M(x,y,t)=M(y,x,t),

(d) M(x,y,t)*M(y,z,s) < M(x,z,t+s),

(e) M(x,y, = ): (0,°) — (0,1] is continuous,

() N(x,y,t)>0,

(g) N(x,y,t)=0 <> x=y,

(h) N(x,y,t)=N(y x,t),

(i) N(x,y,t) ON(y,z,8) = N(x,z,t+s),

() N(xy, * ): (0,%°) — (0,1] is continuous.

Then (M, N) is called an intuitionistic fuzzy
metric on X. The functions M(x,y,t) and
N(x,y,t) denote the degree of nearness and the
degree of non-nearness between x and y with
respect to t, respectively.
this shall
intuitionistic fuzzy metric space

(X,M,N,*, &) by X.

In note, we denote the

Lemma 2.1([6], [12]). In an intuitionistic
X, Mxy, ")
nondecreasing and N(x,y, * ) is nonincreasing
for all x,y€X.

fuzzy metric  space 1s

In all that follows N stands for the set of
natural numbers and X stands for
intuitionistic fuzzy metric space X with the

following properties:
(2.1 lim M(x,y,t)=1,

{— oo

an

lim N(x,y,t)=0

t— o0

~]

RV

for all x,y€X

Lemma 2.2([13]). Let X be an intuition
-istic fuzzy metric space and T,n) be the
topology on X induced by the intuitionistic
fuzzy metric. Then for a sequence {x,} CX,
x,—x if and only if M(X,x,t)—1 and N(x.X,

t) > 0as n— o,

Definition 2.4. Let X be an intuitionistic
fuzzy metric space.
(a) A sequence {x,} in a intuitionistic fuzzy

metric space X is called Cauchy if lim M(x
. t— o
ntp, Xn ,0=1, lim N(Xn+p, Xn ,£)=0 for every
t—> oo

t>0 and each p>0.

(b) X is complete if every Cauchy sequence
in X converges in X.

(c) A sequence {X,} in X is convergent to X

e€X if lim M(x, x, t)=1$,

t— o0

for each t>0.
(d) A map f : X = X is called continuous
at xo if { f(x,)} converges to f(xo) for each

lim N(x,, x, t)=0
t— o0 :

{x,} converging to Xo.

Lemma 2.3. If {x,} is a sequence in an

intuitionistic fuzzy metric space X and M(x,,

. -
Xn+1, t)=Mlxo, X1, '(;;), N(Xn, Xn+1, DS

i . .
N(xo, x1, —;) where @ is a positive number
o

with 0<a{1 and n=12, rOr<r
for sr€1[0,1], then {x,} is a Cauchy sequence
in X

+, s*s=s,

3. Results

The following theorem has a intuitionistic
fuzzy analogue for Jungck’'s [8].

Theorem 3.1. Let X be
intuitionistic fuzzy metric space and let f, g :
X—X be maps that satisfy the
conditions:

(a) g(X)&f(X).

a complete

following
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(b) f is continuous.
(c) M .and N are satisfied the following
conditions: '
(31  Mlgx),gly)ot)=M({f(x),f(y)b),
N(g(x),g(y),at) < N(f(x),f(y),t)
for all x,y€n, t>0 and 0<a<].

Then f and g have a unique common fixed
point provided f and g commute.
Proof Let xo \in X$. By condition (a), we

can find x:
such that f(x1)=g(xo). Therefore we can

define a sequence
{x,J©X such that f(x,)=g(xs-1) by
induction. Also, '

M), E Kt 1), = MG 1)), )
(32)
> Mf(xo), (x1), —=)
. x
and
NG £ 41),) < (1) £, =)
: (3.3) .........
< MH(xo), £(x1), )
(4

So for any positive integer p,
M(f(xﬂ),f(Xn,-i- p),t)

> M(f(x0),£(x1),——)
pa

) t
e eeeanns *M(f(xo),f(m),']E;,TP:T)

and
N(f(Xn,) ,f(Xn,+ p),t)

< N(f(xo),f(x1),—=)
pa

Grerereenens oN<f<XO),f<X1>,;OTf;T)

By (2.1), since

lim M(f(xo),f(Xl),_t—n)=1:
t— oo pa

. t
lim N(f(xo),f(x1),—)=0,
t— o0 pa
from (3.2) and (3.3),
lim M(f(Xn),f(Xn+p),t)2 1* ............ * = 1’

t— co

and
lim Nf(X,),f(Kn4p) SO O emeeer- SO0

t— oo

Therefore by Definition 24 and Lemma 2.3,
{f(x,)} is Cauchy sequence. By the

completeness of X in assumption, there exist
wEX such that {f(x,)} converges to w. So

g(xn 1)=f(x,) tends to w as n — . It can

be seen from the condition (b) of theorem that
the continuity of f implies that of g.
So, {g(f(x,)} — g(w). However, g(f(x,

N=f(g(x,)) from commutativity of f and g.
Hence f(g(x,)) converges to f(w). Since the

limits are unique, f(w)=g(w). Also, f(f(w))=
f(g(w)) by commutativity and

M(g(w),g(g(w)),) = M(E(w), fg(w)),—)
(34) esesnane ) |
=M(g(w), g(g(w)),%)
and
Nig(w),glg(w)),) < NEwW), fgw),—)
(35)
<N(g(w), a(a(w), =)

By Definition 2.3, (21), (34) and (35),
M(g(w), glg(w),t)=1, Nlg(w), glg(w)),t)=0.
Hence g(w)=g(g(w)), and g(w)=g(g(w))=
f(g(w)). Therefore g(w)is a common fixed
point of f and g.

If x, z are two fixed points common to f
and g, then

1=M(x,z,t)=M(g(x),g(2),t)

t t
ZM(f(x),f(z),-;):M(X'Z’E).........
ZM(X,Z,‘O%) — 1 as n—>0,

0= N(x,z,)=N(g(x),g(2),t)

< N(00,82), )=N(x 2,

(83

).........

t
SN(X,Z,‘&—”) — (0 as n—>©,

Therefore x=z by Definition 2.3.

Appendix(Jungck’s Theorem). Let f be a
continuous mapping of a complete metric space
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(X,d) into itself and let g:X — X be a map. If

(a) g(X) E1(X),

(b) g commutes with f,

() d(gx),gly)<ad(f(x),f(y)) for some @€
(0,1) and all x and y in X. Then f and g have
a unique common fixed point.
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