신경회로망을 이용한 가상물체의 표면 마찰력 학습

Surface Friction Learning for Virtual Objects Using Neural Networks

  • 강지민 (강원대학교 대학원 통신멀티미디어공학과 휴먼인터페이스연구실) ;
  • 장태정 (강원대학교 대학원 통신멀티미디어공학과 휴먼인터페이스연구실)
  • Kang, Ji-Min (Human Interface Lab., Dept. of Multimedia and Communication Eng., Kangwon National University) ;
  • Jang, Tae-Jeong (Human Interface Lab., Dept. of Multimedia and Communication Eng., Kangwon National University)
  • 발행 : 2006.02.13

초록

햅틱인터페이스 기술을 이용하면 가상물체의 형태를 만져보고 느껴볼 수 있다. 물체마다 다른 수학적 마찰력 모델을 적용하여 실감있는 마찰력 표현도 가능하다. 그러나 각 물체에 해당하는 마찰력 모델을 선정하는 것과 적절한 마찰계수 등을 반복적 실험을 통하여 알아내는 것은 쉽지 않다. 실제 물체의 마찰력이 알려진 마찰력 모델과 다르다면 수학적 모델로 표현할 수 없는 경우도 있다. 본 논문에서는 신경회로망 학습을 이용하여 마찰력 모델의 선택이나 마찰계수 등을 정하는 과정 없이 실제 물체의 마찰력을 표현하는 방법을 제시하고 있다. 상용 햅틱인터페이스 장치인 PHANToM 2 대를 이용하여 마찰력 획득 시스템을 구성하고 고무판, 종이 등의 물체 표면에서의 속도와 물체에 작용하는 힘을 획득하여 가공한 데이터를 입력 및 출력으로 갖는 신경회로망을 통해 학습시킨 후 OpenGL로 구현한 가상물체에 적용하여 보았다. Force/Torque 센서를 사용하지 못한 일부 문제가 있었으나 예상보다 사실적인 마찰력을 표현할 수 있었다.

키워드