B₂O₃를 첨가한 PCW – PNN – PZT + 0.5wt% MnO₂세라믹스의 유전특성에 관한 연구
정보통신영상공학부 박사과정
인천대학교

A Study on the dielectric Characteristics of PCW – PNN – PZT + 0.5wt% MnO₂
Ceramics adding B2O3
Jung Bo-Ram, Shin Hyea-Kyoung, Kim Sang-Rae, Bae Seon-Gi
Incheon University

1. 서론
고도의 기술 산업의 발전과 자동화된 현대 사회는 기존 의소재에 보다, 더 우수한 특성을 지닌 신소재 개발을 점점
히 요구하고 있다. 특히 전기, 전자 부품 소재는 현재보
다 항상된 특성을 가진 새로운 소재의 개발이 우선되어야
할 것이다.
본 연구에서는 0.03PbO-Co₃W₂O₉-0.07Pb(Nb₁₋₃T₁₋₃T₀₂)O₃
-0.9Pb(Zr₀.₆Ti₀.₄)O₃ 세라믹스의 소결 온도 변화에 따른
이제구조의 유전특성을 살펴보고, 또한 MnO₂와 저 온도
을 갖는 B₂O₃를 첨가하여, 950[℃] 이하의 저온에서 소결
가능한 유전체의 개발을 위해 시험을 제작하였으며,
제작된 시험들에 대하여 XRD에 의한 결정구조의 분석, 유전
성수 및 유전손실의 측정, 주파수 변화에 따른 유전상
수의 측정, 유전성수의 온도 의존성 측정 및 전압용량의
온도계수 등을 고찰하여 실용화 소자로서의 활용 가능성을
에 대하여 연구하고자 하였다.

2. 실험
본 연구는 고순도의 시료를 산화물 혼합법으로 혼합하
여 유전특성이 우수한 PCW-PNN-PZT+0.5wt%MnO₂세라
클 기본 조정으로 하여 일반 소결법으로 산화를 제조하였
다. 전자 천경을 사용하여 평평한 후 열처리하여 가열을
판매로 하여 하루간 동안 140rpm으로 혼합 분쇄하였다.
100℃에서 건조시키 후 분쇄한 시료는 알루미나 유발
로 분쇄한 후 알루미나 도구나에 넣어 기기가에서 850℃
로 2시간 동안 2차 하소하였다. 2차 하소가 끝난 시료는
유발로 분쇄하여 200mesh로 sieving하여 입도를 균일하
게 한 후 바인더로 PVA용액을 혼합한 다음 원형공형
에 1.5[cm]씩 넣고 1[t/cm²]의 압력으로 성형하였다. 3
중 도끼나 구조를 사용하여 950℃, 1000℃, 1050℃,
1100℃, 1150℃에서 2시간 동안 저온 소결하였다. 전극
이 형성하여 DC 30[KV/cm]의 전압을 40분 인가하여 분
극시간 후 특성을 측정하였다.

3. 결과 및 고찰
그림 1은 첨가제 B₂O₃의 첨가에 의한 PCW-PNN-
PZT+0.5[wt%]MnO₂ 시편의 유전상수를 나타낸 것인데
첨가제인 B₂O₃의 첨가량에 따라 차이를 보이고 있음을
알 수 있다. 시편들의 유전상수는 첨가량이 증가함에 따
라 감소하다가 증가하는 경향을 나타냈다. 소결온도
1050℃에서 B₂O₃를 3.0wt% 첨가하였을 경우 유전상수가
637.667로 최대로 증가하였고, 1150℃에서 B₂O₃를
1.0wt% 첨가했을 경우에는 유전상수가 322.779로 최소가 되
었다.

그림 2는 -40℃에서 100℃까지의 온도 변화에 따른 각
소결온도에서의 유전상수의 변화를 나타낸 것이다. PZT계
의 큐리점이 상당히 높다는 점을 감안하면 볼 때 온도가 상
승함에 따라서 유전상수는 측정온도 범위에서 현저한 상
승을 나타냈으며, 알칼리의 온도에서 사용이 가능하다는 것
을 나타낸 것이라고 볼 수 있다. -40℃에서 100℃까지의
온도변화에 따른 유전상수의 변화율은 1150℃에서 B₂O₃를
1.0wt% 첨가했을 경우에 시편이 1.47℃/로 가장 적은 변
화율을 나타내었다.

그림 3은 100kHz에서 1000kHz까지의 주파수변화에 따른
각 소결온도에서의 유전상수의 변화를 나타낸 것이다. 주
파수가 상승함에 따라 유전상수가 완만하게 감소하였고,
특히, 100kHz에서 1000kHz까지의 주파수의 변화에 따른 유전상수의 변화는 소결온도 1150°C에서 B₂O₃를 0.0wt% 첨가한 시편의 경우 0.0016 /[㎫]로 가장 적게 나타내었 다.

그림 1. B₂O₃첨가에 의한 PCW-PNN-PZT+0.5[w%]MnO₂ 시편의 유전상수

그림 2. B₂O₃첨가에 의한 PCW-PNN-PZT+0.5[w%]MnO₂ 시편의 온도변화에 따른 유전상수 (1150°C, 1[㎫])

그림 3. B₂O₃첨가에 의한 PCW-PNN-PZT+0.5[w%]MnO₂ 시편의 주파수변화에 따른 유전상수 (1150°C, 20 [㎫])

4. 결론

본 연구에서는 PCW-PNN-PZT+0.5[w%]MnO₂계 세라믹스에서 B₂O₃의 0.0, 1.0, 3.0wt%로 첨가하여 일반 소성법으로 시편을 제작한 후 소결온도 및 B₂O₃의 첨가량의 변화에 따른 구조성, 유전적인 특성을 측정한 결과 다음과 같은 결론을 얻었다.

1) 유전상수는 첨가량이 증가함에 따라 감소하다가 증가 하는 경향을 나타내었으며, 소결온도 1050°C에서 B₂O₃를 3wt% 첨가했을 때 유전상수는 637.667로 최대값을 나타냈다. 또한, 소결온도 1150°C에서 B₂O₃를 1wt% 첨가했을 때 322.779로 최소값을 나타냈다. 그리고 유전손실 은 첨가량이 증가함에 따라 증가하겠었다가 감소하는 경향 을 나타냈으며, 소결온도 950°C에서 B₂O₃를 3.0wt% 첨가하여 소결한 시편에서 14.08%로 나타났다.

2) 온도 변화에 따른 유전상수는 온도가 증가함에 따라 유전상수를 보였으며, 유전상수는 변화율 은 1150°C에서 B₂O₃를 1.0wt% 첨가했을 경우에 시편이 1.47[㎫]로 가장 적은 변화율을 나타내었다.

3) 주파수 변화에 따른 유전상수는 주파수가 증가함에 따라 감소하는 특성을 보였으며, 소결온도 1150°C에서 B₂O₃를 0.0wt% 첨가하여 소결한 시편의 경우 0.0016 /[㎫]로 가장 적게 나타내었다.

4) 정전용량의 온도계수는 B₂O₃를 첨가하지 않았을 때 전반적으로 낮은 값을 보였으며, 특히 소결온도 950°C에서 B₂O₃를 첨가하지 않았을 때 -40°C ~ 100°C의 온도범위 에서 29.75%로 최소값을 나타냈다.

이상의결과로 이뤄볼 때, PCW-PNN-PZT+0.5[w%] MnO₂계 세라믹스의 유전상수 및 유전손실은 첨가제 B₂O₃ 의 첨가량 변화와 소결온도의 변화에 따라 각각 다르게 나왔으므로, 각 소자의 특성에 맞는 유전상수와 유전손실 값을 찾아 제품화한다면 더욱 향상된 전기소자의 개발이 가능할리라 사료되며, 이 결과 값들을 신중히 연구하여, 시편 제작조건의 개선 및 첨가제의 신중한 선택, 그리고 소결온도의 변화 등에 참고자료로 잘 활용한다면 유전특 성이 크게 향상된 세라믹스의 제작이 가능하리라 생각된다.

참고문헌

1) S. Nishigaki, K. Murano, A. ohkoshi, "Dielectric Properties of ceramics to the system(Sr0.5 Pb0.5 B₆₃₂₅)TiO₃-BiO-3TlO and their Application in a High Voltage Capacitor" J. Am. ceram. soc. vol.65, No.99, pp.554 ~ 560, 1982.