고선뢰성 ESD보호용 접 바리스터의 전기적 특성

중동학, 최근학, 정태석, 이석원, 이현용
상화연구소공업(주), 호서대학교 정보제어공학과, 영지고등학교 전기공학과

Abstract: In order to improve the ESD(Electrical Static Discharge) resistance of multilayer chip varistors, we have investigated ZnO -Pr6O11 based chip varistor by applying tape casting technology, whose fundamental component were ZnO : Pr6O11 :Co3O4 : Y2O3 : Al2O3 = 93.67 : 2.53 : 2.53 : 1.25 : 0.015 (wt %). The effect of sintering condition on the multilayer chip varistors and electric properties was studied. The electrical properties and ESD resistance of multilayer chip varistor could be influenced the sintering temperature and condition.

Key Words: ESD(Electrical Static Discharge), Multi-layer chip varistor.

1. 서 론

적중형 접 바리스터는 절연체로 작동하려 특징한 전압에서 전류의 호흡이 급격히 증가하는 비선형 접합소자로서 적중 접 바리스터의 수상 - 수신주파수에 의한 다양한 ESD에 대한 보호 부품으로 적용되고 있으며 휴대전기의 ESD에 의한 제드의 오동작, 파괴를 방지하는 전기적 방지용 제품으로 널리 쓰이고 있다. [1] 바리스터의 동작 전압은 두께에 본연의 특성에 존재하는 임계 주파수에 의해 결정되며 일변적으로 하나의임계 주파수 2.5 ~ 5 [V]의 펄프전압을 갖는 것으로 알려져 있으며 10[V] 정도의 바리스터 전압을 가지는 적중형 접 바리스터를 제작하기 위해서는 전극간의 바리스터 두께를 약간가하고 임차의 크기를 차우는 방법이 있다. [2] 적중형 접 바리스터의 대표적인 조성은 ZnO -Bi2O3-Cr2O3-CoO-MnO2를 주조소가 ZnO-Bi2O3계와 ZnO-Pr6O11- CoO를 주조소로 한 ZnO-Pr6O11계가 있으며 바리스터의 전기적 특성 중 여러 차원. 에너지 내량은 ZnO-Bi2O3계가 우수한 반면 반복 ESD 특성은 ZnO-Pr6O11계가 우수한 것으로 알려져 있다. [1,2] 본 논문에서는 적중 접 바리스터를 제작하려면 ESD 특성이 높은 것으로 알려져 있다. 또한, 누설전류, 비사전계수의 전기적 특성을 개선하기 위하여 ZnO, Pr6O11, Co3O4, Y2O3, Al2O3을 적용하여 ZnO, Pr6O11, Co3O4, Y2O3, Al2O3 = 93.67 : 2.53 : 2.53 : 1.25 : 0.015 (wt %) 조성에 따른 소결 온도 및 낮은 시간에 따른 전기적 특성을 조사하였다.

2. 실험

본 실험에 사용된 순도 99.99% 이상의 순도를 가지는 ZnO, Pr6O11, Co3O4, Y2O3, Al2O3 원료를 적용하였으며 원료 분말을 조성비에 맞게 평형한 후 저크로니아 볼과 몰을 이용하여 24시간 분쇄, 혼합후 조각하였다. 조각한 분말을 800℃에서 2시간 희석된 후 비드밀 (bead mill)을 이용하여 D50 = 0.82 [μm], BET = 4.8 g/m²으로 분쇄하였다. 분쇄한 분말에 PVC, 분산제, 불리, 가소제를 점거하여 슬러리를 제작한 후 다타브레이드법을 이용하여 그린스트רצ 제조하였다. 100 Pd 내부전극을 이용하여 그린스트artifact에 인쇄한 후 적층. 가압한 후 절단하였다. 절단한 천을 300℃에서 24시간 탈 마인드한 후 실험 계획을 적용하여 소결 온도 및 시간에 따른 전기적 특성을 검사하였다. 적층 바리스터의 크기는 1.0 [L] X 0.5 [W] X 0.5 [T] [mm]이고 그린스트artifact의 두께는 17 [μm], 내부전극 중수는 8층으로 설계 제작하였다.

3. 결과 및 검토

그림 1은 적중 접 바리스터의 변탄면 사진으로 전극간의 두께는 12 [μm]이며 기공이 적정 치밀한 구조를 보이고 있다.
그림 2는 적층 침 바리스터의 소결온도 및 시간에 따른 바리스터 전압 \(V_{\text{eff}} \)로서 소결온도 및 시간이 증가함수록 \(V_{\text{eff}} \)값이 17.7[V]에서 4.7 [V]까지 감소함을 볼 수 있다. 이와 같은 결과는 소결온도 증가에 따른 주기의 크기에 의한 것으로 단위두께당 전압이 301 - 1,500[V/mm]의 값을 가짐을 볼 수 있다.

![Surface Plot of V(t,A)](image1.png)

Surface Plot of V(t,A)

그림 2. 소결온도 및 시간에 따른 바리스터 전압

그림 3은 소결온도 및 시간에 따른 적층 침 바리스터의 누설전류로서 1175°C까지는 0.3[uA]이하로서 우수한 전기적 특성을 보이는 반면 이상의 온도에서는 급격히 증가하는 양상을 보이고 있다. 소결기간에 의한 영향은 1150°C에서는 소결기간이 길어질수록 누설전류가 적게 나타나지만 1175°C 이상에서는 반대로 누설전류의 크기가 증가한다.

![Surface Plot of Leakage](image2.png)

Surface Plot of Leakage

그림 3. 소결온도 및 시간에 따른 누설전류

그림 4는 소결온도 및 시간에 적층 침 바리스터의 비적선 계수로서 1150 ~ 1175°C의 온도영역에서는 45 ~ 69의 우수한 특성을 보이는 반면에 그 이상의 온도에서는 그림 3에 나타나는 듯이 누설전류 증가한 양적 영향과 같이 비적선계수가 급격히 감소함을 볼 수 있다.

![Surface Plot of a](image3.png)

Surface Plot of a

Hold values: Cooling 2.0

그림 4. 소결온도 및 시간에 따른 비적선 계수.

1175°C, 2시간 소결한 적층 침 바리스터에 8kV ESD 10회 인가한 후 전기적 특성 변화량 측정결과 \(\Delta V_{\text{eff}}/V_{\text{eff}} \) 변화량은 positive에서 0.33%. Negative에서 0.55%이다 누설전류는 1 [uA]이하로 우수한 ESD 저항성을 나타내었다.

4. 결론

본 연구에서는 ZnO-Pr6O3계 원료를 적용하여 적층 침 바리스터를 제작하여 다음과 같은 결론을 얻었다.

1. 소결온도 및 시간에 따른 바리스터 전압 \(V_{\text{eff}} \), 누설전류, 비적선계수가 소결시간에 의한 영향보다는 온도에 더 큰 영향을 받음을 확인하였다.
2. 소결조건 1150 ~ 1175°C, 1 ~ 2시간 영역에서 바리스터 단위 두께당 전압 800[V/mm], 누설전류 1[uA] 이하의 우수한 특성을 얻을 수 있었다.
3. 1175°C, 2시간, 8kV ESD 10회 인가한 후 전기적 특성 변화량 측정결과 \(\Delta V_{\text{eff}}/V_{\text{eff}} \) 변화량은 positive에서 0.33%. Negative에서 0.55%이고 누설전류는 1 [uA]이하로 우수한 ESD 저항성을 나타내었다.

참고 문헌
