후처리 조건에 따른 탄소나노튜브 특성의 변화

Abstract : 본 논문에서는 탄소나노튜브를 성장시킨 후 열처리, 화학적 처리를 이용하여 탄소나노튜브의 본성과 화학적 변화의 관찰하였다. 실험에 이용한 탄소나노튜브는 고분산성 탄소나노튜브기술에 의하여 제조된 탄소나노튜브를 이용하였고 후처리 조건은 열처리와 화학처리를 병행하여 사용하였다. 처리된 탄소나노튜브는 SEM 과 TEM 을 이용하여 관찰하였고 화학적 결과를 확인하기 위하여 FT-IR 분석을 이용하였다.

Key Words : Carbon nanotubes, treatment, FT-IR

1. 서 론


기존 상에 성장된 탄소나노튜브의 경우 복합재료화의 어려움이 있으며 기상합성에 의한 경우 서로 불진 형태로 성장되기 때문에 복합재료의 제조에서 본인이 잘 이루어지지 않는다는 점이 단점으로 부각된다.

본 논문에서는 기상합성에 의하여 성장된 탄소나노튜브를 열처리와 화학처리를 사용하여 처리하였으며 그에 따른 효과를 분석하였다.

2. 실험

본 실험에서는 hollow type의 탄소나노튜브를 이용하여 후처리 조건의 변화에 따른 특성을 관찰하였다. 열처리와 액상처리를 각각 실험하였으며 이에 대한 관찰은 field emission SEM (Leo, JSM-6700F)과 high resolution TEM (Philips, Tecnai G 200kV)를 이용하여 구조의 변화를 관찰하였고 FT-IR: (PerkinElmer, GX)을 이용하여 화학적 변화를 관찰하였다.

3. 결과 및 고찰

그림 1의 a) 만들어진 탄소나노튜브에 열처리한 결과이며 b)는 열처리 후 액상처리를 실시하였고 c)는 액상 처리 후 열처리를 실시하였다. 이를 FE-SEM과 HR-TEM으로 관찰한 사진이다. FE-SEM 사진에서는 처리에 따라 탄소 파티클의 양이 줄어들며 탄소나노튜브간의 결합 또한 줄어드는 것이 확인된다. 또한 TEM 사진에서는 후처리가 진행된 해수도 탄소나노튜브의 겉력사이의 결합을 발생하지 않는 것이 관찰된다.
그림 2는 그림 1에서 관찰한 탄소나노튜브의 FT-IR로 측정하였다. 처리를 하여도 C=C 결합을 나타내는 1600 cm⁻¹ 대의 흔수대역의 변화는 적은 반면에 C-O 결합을 나타내는 1100 대의 흔수도가 증가하는 것이 확인된다. 또한 3500 대의 O-H 결합이 증가하는 것은 액상처리 후 탄소나노튜브 표면에 O-H 결합이 남아 있는 것으로 확인된다.

4. 결론

본 연구에서는 탄소나노튜브의 분산을 위하여 후처리를 하였으며 이에 따른 변화를 관찰하였다 FE-SEM과 TEM으로 관찰한 결과 후처리 후 탄소나노튜브 사이의 결합이 강화되는 것이 확인되며 탄소나노튜브의 격벽사이에 둥글한 결합이 발견되지 않았다. 하지만 후처리 후 탄소나노튜브 표면에 O-H 결합과 C-O 결합이 남아있는 것으로 FT-IR 분석으로 확인할 수 있었다.

감사의 글

본 연구는 산업기술과의 지원에 의하여 기초전력연구원(R-2005-7-100)연구로 수행된 과제임.