Study on permeability improved multi-layer encapsulation on Ethylene Terephthalate (PET)
Jin-Woo Han¹, Hee-Jin Kang¹, Jong-Yeon Kim¹, Dong-Hun Kang¹, Jung-Min Han¹,
Yong-Cheul Oh² and Dae-Shik Seo*¹
Yonsei Univ.¹, Kwangwoon Univ.²

Abstract: In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. Results indicates that the SiON/Pt/SiON/Pt/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

Key Words: SiON, Polyimide, Multi-Layer, Encapsulation

1. 서 론

한편 OLED는 유기 발광층을 사용함으로써 수분과 산소에 매우 취약한 특성을 보이고 있다. 따라서 OLEDS 차원의 사용을 위해서는 산소와 수분으로부터 수증층을 보호할 수 있는 Encapsulation 공정이 필수적이다. 본 논문에서는 고유한 장치 방식의 Flexible OLED 소자 제작을 위해 현재 가장 많이 사용되고 있는 PET(ethylene terephthalate) 밸럼 위에 Multi-Layer 구조로 무기 박막과 유기 박막을 반복하여 중첩하여 중첩 조건에 따른 투과율을 측정하였다 [6, 7].

2. 실 행

본 연구에서는 다층 유기 박막의 투과율을 알아보기 위해 200-μm 두께의 PET(Ethylene Terephthalate) 밸럼을 약 300sec 동안 괴사하여 수소, 양모니아 그리고 물을 각각 1:1:5의 비율로 혼합한 용액에서 세척한 후 N2 가스로 blowing한 뒤 Electron beam 장비에서 SiO2를 110°C 조건으로 중첩 하였다. 중첩 두께는 5-6nm/sec 속도로 약 200nm로 하였다. SiON은 Sputter를 이용하여 중첩하였으며 공정압은 3.0*10^-3 torr에서 표준 및 같은 비율로 Ar과 O2를 주입하여 100w에서 약 20분간 중첩하여 200nm 두께로 중첩하였다.

유기물 층은 Polyimide와 Poly acrylic를 사용하였으며 Spin Coater 기기를 이용하여 Spread 500rpm, Spin 3000 rpm으로 코팅 painting 하였다. Curing은 110°C에서 약 2시간 동안 하였다. 이와 같은 공정을 각각 반복하여 Multi-layer를 구성하였다.

3. 결과 및 고찰

본 연구에서는 multi-layer를 중첩함에 있어서 발생하는 스트레스를 최소화하기 위해 총 3가지 타입의 모델을 실험 하였다.

그림 1의 세 가지 모델의 stress simulation을 결과 Type 2의 stress가 가장 적은 것으로 나타났다 [8, 11, 13].

Fig. 1. Structure of Type1, Type2, Type3.

그림 1. Type1, Type2, Type3의 구조

이를 바탕으로 투과율 측정을 위한 모델의 제작은 Type
2로 하였으며 표2과 같이 유기물 증과 유가물 증을 각각 SiO$_2$, SiON 그리고 Polymide, Polyacryl 로 하여 총 4가지 Type의 모듈을 제작 하였다.

![Graph](image)

그림 2. Strain of Type1, Type2, Type3.

실제 SiON의 유기물 증으로 하는 모듈은 Polymide, Polyacryl 두 가지 유기물 증에서 모두 MOCON으로 측정 가능한 수치인 1×10^{-8} g/m2/day보다 낮은 값을 기록 하였다. SiON 백막의 투怖률이 SiO$_2$ 백막의 투怖률에 비해 높게 나오는 이유는 N$_2$ 흐르기로 인해 표면의 일도가 높아져 투怖률이 향상되는 것으로 생각된다. [12,13]

4. 결론

SiO$_2$ 백막의 경우 고온에서 증착된 경우 0.05 g/m2/day에 도달할 수 있었다. 이러한 수치는 실제 상용화를 목표로 하는 OLED소자성능에는 미치지 못하는 성능이라 SION으로 제작한 경우 실제 성능을 목표로 하는 수치에 근접한 성능을 나타내었다.

참고 문헌
