2006 F=HFEIZTHEGEUS =FF Vol 33, No. 1(B)

NMFE

0|28t Motor Imagery © I} 28

0134 4° Andrezej Cichocki ZZ&
EARUGSD ZREID

leehk@postech.ac.ki°.

cia@brain.riken.jp, seungjin@postech.ac.kr

NMF for Motor Imagery EEG Classification

Hyekyoung Lee®,

Andrezej Cichocki,

Seungjin Choi

POSTECH Dept. of computer science and engineering

2

we present a method of feature extraction for motor imagery single trial EEG
where we exploit nonnegative matrix factorization (NMF) to select discriminative

In this paper,
classification,
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b2,

features in the time-frequency representation of EEG. Experimental results with motor imagery EEG
data in BC! competition 2003. show that the method indeed finds meaningful EEG features
automatically, while some existing methods should undergo cross—validation to find them.

1. Introduction

Brain computer interface (BCIl) is a system that is
designed to translate a subject's intention or mind
into a control signal for a device such as a
computer, a wheelchair, or a neuroprosthesis. The
most popular sensory signal used for BCl is EEG
which is the multivariate time series data where
electrical potentials induced by brain activities are
recorded in a scalp. Exemplary spectral
characteristics of EEG involving motor, might be yu
rhythm {(8-12 Hz) and B rhythm (18-25 Hz) which
decrease during movement or in preparation tor
movement (ERD) and increase after movement and
in relaxation (ERS) [1]. ERD and ERS-could be used
as relevant features for the task of motor imagery
EEG classification. However those phenomena might
happen in a different frequency band for some
subjects, for instance, in 16-20 Hz, not in 8-12 Hz
[2]. Moreover, it is not guaranteed that a subject
always concentrates on imagination during
experiments. Thus, it is desirable to determine
appropriate activated frequencies and associated
features for each subject, during motor imagery
experiments. In this paper we present a method of
discriminative feature extraction where we,exploit the

sparseness, [, norm, and nonnegative matrix
factorization (NMF). Morlet wavelets are used to
construct a nonnegative data matrix from the

time-domain EEG -data. We use the NMF with a
~divergence that was recently proposed in [3,4].
Numerical experiments using Data Set Il of BCI
competition 2003 show that our NMF-based method
learns  basis  vectors indicating  discriminative
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frequencies and determine useful features for the
task of single-trial online classification of imaginary
left and right hand movements [5].

2. Nonnegative Matrix Factorization

NMF is one of widely-used multivariate analysis
methods for nonnegative data, which has many
potential applications in pattern recognition and
machine learning [6.7]. Denote the data matrix by

=[z(1), -, c(MER™*Y, where {z()} s N
observed m-dimensional data points. NMF seeks a
decomposition of the nonnegative data matrix X that
is of the form:

X=AS. ([4],720&nd[5] 0) (1)
where AER™™" contains basis vectors in its
columns and $€R"*Y is the associated encoding
variable matrix. Amari's a-divergence and its
mutltiplicative algorithm were proposed in [3.4]. The
o-divergence between X and AS is given by

D,IX1 AS]= E[aX +(1=a)l48l; - X3145)7°] (2)

The parameter a is associated with the

characteristics of a learning machine, in the sense

that the model distribution is more inclusive (as a

goes to oo) more exclusive (as a goes to — o).

The multiplicative ajgorithm regarding the

minimization of the o-divergence of 4S8 from X in
(2). is given by [4]

1
):k[A,“(X‘, [AS8])°1 >

5, 5{ Sl 8] ] . (3)
Ek[sik(&k/[/ls]ik)ﬂ] }1;
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3. Proposed Method

The overall structure of our proposed single trial
EEG classification is illustrated in Fig.
Wref{fig:algorithm test}, where the method consists
of three steps: (1) preprocessing involving wavelet
transform: (2) NMF-based feature extraction, (3)
probabitistic model-based classification. Each of
these steps is described in detail.
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Fig.1. the overall structure of proposed method

Data Description : We used one of BCl competition

2003 data sets, which was provided by the
Department of Medical Informatics, Institute for
Biomedical Engineering, Graz University of

Technology. Austria [8]. We use only, G and C
channels because of the contralateral property of
brain activity.

Preprocessing We obtain the time-frequency
representation of the EEG data, by filtering it with
complex Morlet wavelets,

!Vm(f) (t) — ,/48-;(,-“(1— T)/d(f)e— {t+ - ﬂ/d(f))"/z_

where w, Iis the characteristic eigenfrequency, d(f)=

{(wps y2+wh)/(anf) and f is the main receptive
frequency. The wavelet transform of C, . (¢)(i=3.,4)
at time 7 and frequency f with C; channel and the
kth trial is their convolution with scaled and shifted
wavelets. The amplitude of the wavelet transform,
z; {f.1), is given by z, (f.7)= I C'L-A;‘.(t)*q/,ﬂd(f)(t) Il
for i=3,4 and k=1, .K where K is the number of
trials. Concatenating those amplitudes for ¢ =3.4 and
(f1sooifo7)=[4,..,30} Hz, leads to z,(t)ER™ of the
form z,(8) = lzg (f1-) - riegy (fort) 2oy (frt)e g Fmt)]
Incorporating with 7 data points in each trial, we
construct X, =z, (1)-.z (M€ r™*T.  Collecting K&
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trials leads to the data matrix X=[X,, -~ X€R¥*AT,
Labelled and uniabelled data are distinguished by
Xy ain @8N0 X, respectively.

Feature Extraction : We extract feature vectors by
applying NMF to the data matrix X constructed from
the wavelet transform of EEG over the frequency
range f< [4....,30] Hz. The data matrix X& R *4A7
contains a large number of data vectors reflecting K
trials and 7T data points of EEG. Instead of using
the whole data vectors, we first select candidate
vectors which are expected to be more
discriminative, then use only those candidate vectors
as inputs to NMF, in order to determine the basis
matrix A. The power spectrum in the localized
frequency range such as p or 3 band of C; and C;
channels, is activated during the imagination of
movement. Thus, we investigate the power and
sparseness of each data vector to select candidate
vectors. We use the sparseness measure in [9],
described by &(x) = {vim —(Ze))/ 222 }/{vm -1},
where z; is the ith element of the m-dimensional
vector The candidate vector selection is
performed in the following way. First, we compute
the power of each column of X, by summing its

elements. The average power ¢ is computed by the
sum of all elements in z;. For each column of X,
the sparseness is calculated for €3 and G
channels, by considering the first 27 rows and the
last 27 rows of X, respectively. Averaged
sparseness values for each channel are computed,
then they are added, leading to the final average
sparseness. We select candidate vectors from X if
the data vector has the power greater than the
average power and has the sparseness greater than
70% of the average sparseness. We apply the NMF
algorithm in Eg. (3) and (4), to the candidate data
matrix X, leading to X=AS. In our experiments,
about 31% of data vectors were selected as
candidate vectors.

xT.

Classification We use the probabilistic model-
based classifier proposed in [5]. where Gaussian
class—conditional densities for a single data point in
time ¢ are integrated temporally by taking the
expectation of the class probabilities with respect to
the discriminative power at each point in time.

4. Numerical Experiments

The time-domain EEG data is transformed into the
time—frequency representation by complex Morlet
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Fig.2. Online (a) classification accuracy and (b) MI

wavelets ~ with f=14,..,30] Hz, and
r=1[3,...,9] sec. We select candidate spectral vectors
using the method described in Sec.3.3. Then we
apply the NMF algorithm in (3) and (4) with
a=05,1,2 and n=2.4,5.6. (the number of basis
vectors). As the number of basis vector increases,
the spectral components such as g rhythm (8-12
Hz), 8 rhythm (18-22 Hz), and sensori-motor rhythm
(12-16 Hz). appear in the order of their importance.
All  rhythms have the property of contralateral
dominance, so they are present in basis vectors
associated with ¢, or C, channel, separately. In our
empirical study, the best performance was achieved
when a=0.5.1 and 5 basis vectors. The single trial
on-line classification result, is shown in Fig.2, where
the classification accuracy is shown in (a) and the
mutual information (MI) between the true class label
and the estimated class label is plotted in (b). The
classification accuracy is suddenly raised from 3.43
sec. The maximal classification accuracy is 88.57%
at 6.05 sec, which is higher than the result without
the data selection step in the training phase (86.43%
at 7.14 sec). M| hits the maximum, 0.6549 bit, which
occurs at 6.05 sec. The result is better than the one
achieved by the BCI competition 2003 winner (0.61
bit). Table 1 show the maximum mutual information
in the time courses per a trial varying the value of «
and the number of basis. The smalier the value of
o, the better the mutual information, however, o is
not critical of determining the performance.

wy =6,

5. Conclusion

We have presented an NMF-based method of
feature extraction for on-line classification of motor
imagery EEG data. We have also introduced a
method of data selection where the power and the
sparseness  was exploited. Empirical results
confirmed that the data selection scheme really
improved the classification accuracy by 2.14 % and
the mutual information by 0.1127 bit. Existing
methods should undergo the cross-validation several
times, in order to select discriminative frequency
features. However, we have shown that our NMF-
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o number of basis
2 4 5 ] 7
05 05545 | 05803 | 06549 | 06256 | 0.5875
1 05545 | 05803 | 06549 | 06256 | 0.5803
2 05408 | 05745 | 06404 | 06256 | 0.5803
Table 1. MI for various a and number of basis
based method could find discriminative and
representative  basis  vectors  (which  reflected
appropriate  spectral characteristics) without the
cross-validation, which  improved the on-line
classification accuracy. Our method improved the

mutual information achieved by BCl competition 2003
winner, by 0.0449 bit, where twa frequencies {10
and 22 Hz) were selected using the leave-one-out
cross validation. The value of « in the NMF
algorithm, was not critical in our empirical study.
However, it was confirmed that the parameter a is
associated with the characteristics of a learning
machine, showing that distributions of basis vectors
become more smooth, as a goes to oo,
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