2006 FSAFEIFTESEUE =F3 Vol 33, No. 1(A)

2ol 3319 2@y oI E HE Al EHIH ZH Yy
U3 Y5 BGE
QANGT AFEBEDY BN AT AT
aim'gh‘o@yonsei.ac.kr
jspark@yonsei.ac.kr

hantack@kurene.yonsei.ac.kr

KISS Korea Computer Congress 2006

A Simulation Framework for Mobile 3D Graphics Architecture

Won-Jong Lee’ Jeong-Soo Park Tack-Don Han
Media System Laboratory, Department of Computer Science, Yonsei University

8

g}:

In this paper we describe a simulation and development framework for designing mobile 3D graphics architectures. We are developing
a simple and flexible simulation and verification enviromment (SVE) that uses giTrace's ability to intercept and redirect an OpenGL|ES
streams. In combination with glTrace to trace OpenGL|ES commands, the SVE simulates the behavior of mobile 3D graphics pipeline
during playback of traces, and then produces the second geometry trace that can be used as a test vector for the Verilog/HDL RT-level
model. By comparing the frame-by-frame results, we can conduct architectural verification. To demonstrate the functionality of the SVE,
we show the implementation of the verified mobile 3D architecture on a FPGA board. For this, we also present an application
development environment (ADE) includes a mobile graphics AP and a device driver interface (DDI). The proposed two software
environments, the SVE and the ADE could be used for developing and testing mobile applications, architectural study and speculative

hardware designs.

1. Introduction

Mobile devices such as hand-held phone, smart phone, digital mul-
timedia broadcasting (DMB) terminal, PDA, and portable gaming con-
sole are being used all over the world. The market has accepted mobite
devices as multi-functional convergence devices that will take the
place of many traditional, portable, consumer electronic devices, such
as cameras and music players. Increased interest in mobile graphics
can be seen in the activities of ongoing standard APIs, such as
OpenGL|ES (for embedded systems) [1] and M3G (Java Specification
Request 184) [2]. Recently, various hardware manufacturers are re-
leasing graphics processing units (GPUs) for mobile devices. With the
advent of system-on-chip (SOC) design paradigm for embedded sys-
tem and advanced ASIC technologies, many chipsets or IP cores are
under development [31{4][5}[6]{7].

Designing mobile 3D graphics hardware requires an efficient soft-
ware environment. Software simulation environment could support
easy modification and fast testing the architectures before designing
the cycle accurate RT-models. Moreover, the simulation environment
could be used for functional level verification after designing the
RT-models. However, the simulation of graphics architecture presents
some unique challenges compared to general-purpose computer sys-
tem [8). During the time it takes to build a complex simulation infra-
structure, the simulated architecture can easily become obsolete due to
the rapid advances in GPU architectures, The architecture of GPUs is
largely secret; vendors in the highly competitive PC graphics arena are
reluctant to release architectural details. Moreover, the architecture of
GPUs is moving towards the general purpose for supporting
programmability. These features are inherited to the mobile 3D hard-
ware and affect standard mobile graphics APIs such as OpenGL|ES.
Consequently, a flexible simulation framework to support various ar-
chitectural studies is indispensable for designing the mobile 3D
hardware.

In this paper, we present a simulation and verification environment
(SVE) for designing mobile 3D graphics hardware. The SVE consists
of three components - benchmark applications, a publicly available
tracing tool (g/Trace [9}), functional simulator (we call this simDavid)

226

models generic OpenGL|ES pipeline. In combination with giTrace to
trace OpenGL|ES commands, the simDavid simulates the behavior of
mobile 3D graphics pipeline during playback of OpenGLIES call
traces, and then generates the other geometry traces. The resulting
traces can be fed into the Verilog/HDL RT-level model - emDavid
[10]. Finally, the simDavid can simulate a rendered scene frame by
frame that can be used for the verification of the architecture by com-
paring the results of RT-level model. To demonstrate the functionality
of the SVE, we show the implementation of the verified mobile 3D ar-
chitecture on a FPGA board. For this, we also present an application
development environment (ADE) that includes a mobile graphics API
compatible with OpenGL|{ES(ver.1.1) and a device driver interface
(DDI). The proposed two software environments, the SVE and the
ADE could be used for developing and testing mobile applications, ar-
chitectural study and hardware design.

The rest of this paper is organized in five sections. Section 2 de-
scribes the simulation and verification environment. Section 3 ex-
plains our implementation of related API and device driver. Section 4
shows the demonstration of our software environment on FPGA
boards. Section 5 concludes the paper and discusses future work.

2. Simulation and Verification Environment

The overall simulation environment and data flow is shown in
Fig. 1. The simulator is driven using a trace of OpenGL|ES graph-
ics commands instrumented with additional information that de-
scribes the behavior of those commands and the contents of
memory. This trace is fed into our functional simulation model
-simDavid that simulates the flow of data and computation through
each stage in the decoupled architecture of OpenGL|ES pipeline.
During execution, we generate the geometry traces and feed them
into the Verilog/HDL simulator for the cycle-timer simulation of
rasterizer operations. Finally, the simDavid outputs the rendered
frame images that are used for the verification of a given archi-
tecture by comparing with the results from the Verilog/HDL
model. In this section, we describe the structure of our simulation
and verification environment.

2006 ®=HFEFHENE =E3 Vol. 33, No. 1(A)

Inierceptor

imodified glTrecr)

Commercul OperaLES

1
1
[}
)
1
[
[
)
)
Implemeatation]
[}
1
1
1
1
1
1
)
[}

]
]
1
t
]
i
]
1
1
]
1
1
| True Jup
]
]
'
1
]
i
]
T
]
1
1
'

..--------1---------_------

(libples_cwe 1)
Functional Simulator (simDavid) Cycle-Timer
cpu Po——— - Verilog HDL FPGA
Emulation Z Geometry Simulator Targeting
Texture Units Units (emDavid)
Display k.:-.. Framebulfer
Verifaton Veritcution
Exccution ! S'W Simulation HW Simulation

Fig. 1 Overview of the proposed simulation & verification environment

3.1 Capturing the traces of OpenGL|ES commands

Driving our simulation environment is a trace of graphics
commands. This is similar to the OpenGL tracing approach described
by Sheaffer [8]. We utilize the glTrace [9] to capture the original
graphics commands trace. The glTrace is a tool for manipulating
streams of traditional OpenGL commands and generates traces and oc-
currence statistics. The use of glTrace simplifies the task of capturing
the behavior of real-world applications, since the glTrace can be ap-
plied non-invasively to applications for which source code is not avail-
able and can store an application's OpenGL stream to disk for play-
back and reproducible analysis later. Besides, the glTrace is itself a
DLL file to replace the standard OpenGL library (opengl32.dil). As
the application makes calls to the OpenGL AP, the giTrace leaves the
called function log with its parameter lists and then re-call the actual
original OpenGL library for execution. Thus, we can use any OpenGL
application as a benchmark without any requirement on the avail-
ability of source code.

We modified the glTrace so that OpenGLI|ES call is supported. As a
result, this modified glTrace can replace a commercial OpenGL|ES li-
brary implementation (libgles_cm.dll). We used Hybrid Graphics’
OpenGLIES implementation[15] that supports Pocket PC, Nokia
Series, BREW, and Windows: x86 compatible PC. The OpenGL|ES
applications can be executed with this commercial library on the desk-
top PC. Therefore, modified glTrace can successfully capture the com-
mands during the OpenGLI|ES application’s execution.

3.2 Functional simulator description

After gathering OpenGL{ES commands traces and memory dumps,
the behavioral level simulation of OpenGL|ES pipeline can be per-
formed in the functional simulator, simDavid. The internal block dia-
gram of simDavid is shown in Fig. 2. The simDavid simulator consists

OpenGLIES commands traces. Texture memory dumps

|

: Parser & Loader]

N 1 [

Pre-T&L Bulfer
N ertex Buler

. Texture '

| T&L Engine Memory

| J Geometry traces

! [Post-T&L Buffer |] (vertex coordinat

| ¥ ! color, texture. nommal)
! Stte PP e sssemIY Texture "

;Regis\:rs” Rasterizer Mapping Units " Texture memory

(triangle setup engine access races

& span processor)
3
Raster Operator
(fogging alpha test
depth & stencil test
alpha blending)

Framebuffer -

| color butfer
i depth buffer

stencil buffer v

Framebuifer Frame images

access traces

Fig. 2 The internal block diagram of simDavid

227

of parser/loader, T&L engine, rasterizer, texturing unit, raster operator,
and graphics memory. Simulation proceeds in the following way:

* Parsing and loading: Initially, the OpenGL|ES command traces
are parsed line-by-line and classified into function names and parame-
ter lists. The geometry information (vertex coordinates, texture coor-
dinates, and normal) in vertex array is fed into the Pre-T&L buffer.
Any uniform and state values such as matrices, lighting parameters,
viewport, and texture parameters are stored in state registers. The tex-
ture is loaded to the texture memory.

* Geometry processing: Whenever the Pre-T&L buffer is full or
any global states for primitives are changed, simDavid starts the ge-
ometry pipeline: transformation, lighting, clip test, texture coordinate
generation, and projection. In each stage, needed states values
(matrices, lighting parameters) are fetched from state registers.
Computed geometry values are stored to the Post-T&L buffer and
traced primitive-by-primitive.

* Rasterization: After geometry processing, each vertex is indexed
with regard to the current OpenGL|ES primitive in “primitive assem-
bly”. Next, the general rasterization processing (triangle setup and
edge work, and span processing) is performed.

* Texture mapping & raster operation: After rasterization, per-frag-
ment operations are performed. This includes texture mapping, fog-
ging, alpha test, depth and stencil test, alpha blending, and frame buf-
fer operation in a fully pipelined manner. Texture memory and frame-
buffer accesses are recorded and traced for performance evaluation in
the cache system. Finally, rendered frame images are generated.

In summary, the simDavid simulates a fixed-function mobile
GPU’s behavior. Every functional unit either advances in its computa-
tion, possibly producing an output for the next stage and incurring the
cost of that computation's operations, or stalls as it waits on a buffer.
By analyzing the activities of the various stages, we can study the per-
formance and bottlenecks of the system. The simulation advances rela-
tively quickly by architectural simulation standards. A simulated
frame for a medium-complex (QVGA resolution) OpenGL|ES applica-
tion requires approximately 3-5 seconds (except image and trace gen-
eration) on a 2.8GHz Inte] Pentium IV with 512Mbytes RAM. This
enables rapid exploration of design parameters.

3.3 Verifying the RTL model

The simDavid is used in the architectural verification of emDavid
[10]. The emDavid is a rasterizer architecture that supports
OpenGLIES ver 1.0 and designed for mobile 3D graphics that support
VGA (640x480) or SVGA (800x600) screen size, 32bit color, depth
buffer, Gouraud shading, texture mapping and raster operation. The
performance specification calls for 24-30 frames per second with a
maximum of 100K vertices per frames and maximum of 4M triangles
per second, while running at 100MHz.

The emDavid rasterizer at the RT-level (RTL) is modeled using
Verilog/HDL. The simDavid simulator provides the geometry traces
as test vectors for emDavid and shows the correct values for compar-
ison with the emDavid simulation results. The test vectors are trans-
lated by the Verilog programming language interface (PLI) routine for
the Verilog/HDL model. The Verilog/HDL simulator uses the test vec-
tors, executes the simulation, and produces a pixel data dump. To find
error bounds, this pixel dump is compared with the results of
simDavid. Using the verification scheme. we can conduct architectural
studies involving visual simulation and use of a few fixed-point for-
mats for computation in data paths.

4. Application Development Environment

To demonstrate the functionality of the simulation and verification
environment, we show the implementation of the verified emDavid on
a FPGA board. For this, we also present an application development
environment (ADE) that includes a mobile graphics API compatible

2006 FFAFEIFHEENE =53 Vol. 33, No. 1(A)

Mobile 3D Application
| OpenGLIES function calts
Application platform

Mobile host software
1 Device Drives Interface

[OemingSywem __ [] SWiayer

lou-tevel

OpenGLIES implementation

register comnand N Loy or

graplics
ommands - -
ARM Mobile 3D Graphick H/W
(T&L operation) Register sct
Graphics

e) ST
Vertex Buffer ™ 44 Tewse mapping unit

Fig. 3. Application development environment includes mobile
graphics API and device driver interface on a FPGA

with OpenGL|ES ver. 1.1 and a device driver interface (DDI). A
well-defined graphics API optimized for mobile devices is needed to
visualize and accelerate the graphics application on mobile 3D
hardware. The OpenGLIES is a low-level, lightweight API for ad-
vanced embedded graphics using well-defined subset profiles of
OpenGL. This standard 3D graphics API for embedded systems makes
it possible to offer many advanced 3D graphics and games across all
major mobile and embedded platforms. Since OpenGL ES is based on
OpenGL, no new technologies are needed. This ensures synergy with,
and a migration path to, full OpenGL -the most widely adopted
cross-platform graphics API. Currently, most of the mobile 3D hard-
ware vendors try to support the full specification of OpenGLIES.

To support the compatibility of running mobile applications, an
OpenGLIES ver. 1.1 compatible mobile graphics library, is im-
plemented by modifying and repacking the Mesa 3D graphics library
[11]. Although the Mesa has a few advantages, it has some limitations
for use as a mobile graphics library. Data structures (contexts, states,
etc.) that are defined in Mesa are too big and complex. The size of
compiled footprint is about 800Kbytes. We simplified the overall
structure and optimized the functionalities to support embedded
systems. The application development environment is shown in Fig.3.
1t fills the gap between mobile application and hardware blocks on the
application platform of mobile devices.

Device driver interface (DDI) drives the mobile graphics hardware
by controlling the register set. Both device driver and graphics hard-
ware controller are monitoring register sets. They are synchronized us-
ing handshaking protocol. After geometry processing in ARM, the set
of transformed vertices, ready to be rasterized, are stored to 4Kbytes
vertex buffer (VB). The VB contains the hardware setting information,
vertex coordinates, texture coordinates, color, depth, and others. After
vertex buffer is generated, DDI sets control registers that result in
copying VB in system memory to graphic memory. Mobile graphics
hardware reads current VB line by line, and starts rendering triangle
by triangle. If all VBs corresponding to current frame are rendered,
DDI sets registers for flushing framebuffer. Then, DDI sets the control
registers to let graphics hardware clear and initialize current results
and buffer for next frame.

5. Implementation and Demonstration on a FPGA Board

The implementation and demonstration of emDavid on two target
FPGA boards using the ADE of Fig. 3 is described in this section.
Target FPGA board is a dedicated board for designing digital multi-
media broadcasting (DMB) terminal and consists of an ARM 10 pro-
cessor, two FPGA chips (Xilinx Virtex-2) and peripheral blocks. Its
display supports screen resolution of 640x480 or 800x600 and pSOS
[17] is used as the operating system. The mobile graphics API, DDI
and emDavid of Fig. 3 are ported to target board. We developed a few

228

(a) Texture mapping
Fig. 4. Screenshots of real-time rendering on target FPGA board
ported our ADE

(b) Environment mapping

simple OpenGL|ES applications for testing, Fig. 4 show the screen-
shots of real-time rendering of these applications on FPGA board. On
the average, we obtain a rendering performance of 5-10 frame/second
at low clock speed (10-20MHz).

6. Conclusion

A simple and flexible simulation and verification environment for
developing mobile 3D graphics hardware has been described in this
paper. In combination with a publicly available tool-glTrace to trace
OpenGL|ES commands, simDavid simulates the behavior of graphics
hard-ware during playback of OpenGL|ES call traces, and then gen-
erates the other traces-memory access, geometry information, etc. The
resulting traces are fed into the VHDL/Verilog RT-level model for
performance evaluation. Finally, simDavid can make a rendered scene
frame-by-frame that can be used for the verification of RT-level
model. For mobile visualization, we also implemented a mobile graph-
ics API compatible with OpenGLIES ver. 1.1 by repacking the Mesa
3D graphics library and a device driver interface for the graphics ren-
derer-emDavid implemented on FPGA boards.

The proposed application development environment comprising a
simulator, an API and a device driver can be used for other applica-
tions, architectural study, and hardware design.

References

[1] Khronous Group, OpenGL ES, http://www khronos.org
[2] Java Community Process, JSR-184, http.//www.jcp.org/en/ist/detail 7id=184
[3] GoForce 3D 4500, nVidia,
hap/www.nvidia. cony page! ‘goforce 3d 4500.humt
[4]) Imageon 3D, ATL hup://www ati. com/products/handheld/products html
[5] G40, Bitboys, hitp;//www.bitboys.com/products php
[6] Mali, Falanx, http://www falanx.com/product.htmi
{7] PowerVR MBX, Imagination Technology,
http:/iwww.powervr.com/Products/Graphics/MBX/Index.asp
[8] Sheaffer,] W, Luebke, D., and Skadron, K.: “A flexible simulation
framework for graphics architectures’, Proceedings of SIGGRAPH/
Eurographics Workshop on Graphics Hardware, Aug. 2004, pp. 85-94
[9] giTrace2, Hawk Software, http://www.hawksoft.com/gltrace
{10] Jeong, C.H., Park, W.C., Jeong,).C., Woo, H.J.,, Lee, K.W., Lee, W.J,, Kim,
1S, Lee, S.G,, Kim, J.H., Han, T.D.. and Lee, M.K.: ‘EmDavid: an
embedded 3D graphic accelerator for mobile devices®, Proceedings of IEEE
Cool Chips, April 2003, pp. 72
[11] Mesa 3D graphics library, http; ‘W r
[12] Ewins,).P., Watten, P.L., White, M.,] McN 'D.J, and Lister, P.F.:
‘Codesign of graphics hardware accelerators’, Proceedmgs of SIGGRAPH/
Eurographics Workshop on Graphics Hardware 1997, pp. 103-110
113] Lee, LH., Kim. 1.Y., Im, Y,H., Choi, Y., Shin, H,, Han, C., Kim, D., Park,
H,, Seo, Y I, Chung, K., Yu, C.H, Chun, K., and Kim, L.S.: ‘A
hardware-like high-level language based environment for 3D graphics
architecture exploration’, Proceedings of IEEE International Symposium
on Circuits and Systems, May 2003, pp.512-515
{14] Crisu, D., Cotofana, S.D., Vassiliadis, S., Liuha, P.: ‘GRAAL -a
development framework for embedded graphics accelerators,” Proceedings
of Design, Automation and Test in Europe, Feb. 2004, pp. 1366 - 1367
{15] Rasteroid OpenGL|ES implementation, Hybrid Graphics,
bitp://www hvbrid. (i/main/download/ools.php
{16] DINERO1V cache si or, http://www_cs.wisc.edw/~markhill/Binerol V
[17] pSOS real-time operating system, Wind River, ht ww. windriver.com

